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Abstract

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has
been designed as a SPICE-compatible, high-performance analog circuit simulator, and
has been written to support the simulation needs of the Sandia National Laboratories
electrical designers. This development has focused on improving capability over the
current state-of-the-art in the following areas:

� Capability to solve extremely large circuit problems by supporting large-scale par-
allel computing platforms (up to thousands of processors). Note that this includes
support for most popular parallel and serial computers.
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� Improved performance for all numerical kernels (e.g., time integrator, nonlinear
and linear solvers) through state-of-the-art algorithms and novel techniques.

� Device models which are specifically tailored to meet Sandia’s needs, including
many radiation-aware devices.

� Object-oriented code design and implementation using modern coding practices
that ensure that the Xyce Parallel Electronic Simulator will be maintainable and
extensible far into the future.

Xyce is a parallel code in the most general sense of the phrase - a message passing
parallel implementation - which allows it to run efficiently on the widest possible number
of computing platforms. These include serial, shared-memory and distributed-memory
parallel as well as heterogeneous platforms. Careful attention has been paid to the
specific nature of circuit-simulation problems to ensure that optimal parallel efficiency
is achieved as the number of processors grows.

The development of Xyce provides a platform for computational research and de-
velopment aimed specifically at the needs of the Laboratory. With Xyce, Sandia has
an “in-house” capability with which both new electrical (e.g., device model develop-
ment) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms)
research and development can be performed. As a result, Xyce is a unique electrical
simulation capability, designed to meet the unique needs of the laboratory.
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1. Introduction

Welcome to Xyce
The Xyce Parallel Electronic Simulator is a SPICE-compatible [1] [2] circuit simulator, that
has been written to support the unique simulation needs of electrical designers at Sandia
National Laboratories . It is targeted specifically to run on large-scale parallel computing
platforms but is also available on a variety of architectures including single processor work-
stations. It aims to support a variety of devices and models specific to Sandia needs as
well as the standard capability exhibited by current commercial simulators.
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1.1 Xyce Overview
The Xyce Parallel Electronic Simulator project was started in 1999 to support the simula-
tion needs of electrical designers at Sandia National Laboratories. The current release of
Xyce is version 3.0, and the code has evolved into a mature platform for large scale circuit
simulation.

Xyce includes several unique features. In addition to allowing the simulation of circuits of
unprecedented size, Xyce includes novel approaches to numerical kernels including time
integration algorithms, nonlinear and linear solvers. The primary driver for this numerical
innovation has been the need to simulate very large scale circuits (100,000 devices or
more) on the analog level. However, it has yielded benefits, in terms of robustness and ef-
ficiency, for all classes of problems. Ideally, the increased numerical robustness minimizes
the amount of simulation “tuning” required on the part of the designer.

1.2 Xyce Capabilities
Xyce has a number of unique features which are described in this section.

Support for large-scale parallel computing

Xyce is a truly parallel simulation code, designed and written from the ground up to support
large-scale (up to thousands of processors) parallel computing architectures. This gives
Xyce the capability to solve circuit problems of unprecedented size in time frames that
make these simulations practical.

Xyce as a parallel code uses a message passing parallel implementation, which allows it to
run efficiently on the widest possible number of computing platforms. These include serial,
shared-memory and distributed-memory parallel. Furthermore, careful attention has been
paid to the specific nature of circuit-simulation problems to ensure that optimal parallel
efficiency is achieved even as the number of processors grows (parallel scaling).

Improved performance for all numerical kernels

In writing Xyce from scratch, new algorithms and heuristics have been used which improve
the overall performance of the various numerical kernels. For example, a number of new
developments have made it possible to reliably apply iterative linear solvers to circuit prob-
lems. This allows Xyce to scale well to much larger problem sizes than would be possible
with a conventional circuit simulator. Using iterative linear solvers also allows Xyce to run
much more effectively in parallel.
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On the nonlinear solver level, the addition of continuation algorithms to Xyce has been
another recent solver enhancement. In particular, Xyce has been very successful applying
such algorithms to large MOSFET circuits. See chapter 8 for more details.

Device Model Support

New device models are continually being added to Xyce, to meet the needs of Sandia
users. Table 1.1 contains a complete list of devices for Xyce Release 3.0. For a complete
description of each device, see the Xyce Reference Guide [3]. As there are many devices
under development, several devices are available in the development branch of the code
that are not available in the release branch. For current device availability, consult with the
Xyce development team.

Device Comments

Capacitor Age-aware, semiconductor

Inductor Nonlinear mutual inductor (see below)

Nonlinear Mutual Inductor Sandia Core model (not fully PSpice compatible)

Resistor Semiconductor

Diode (Level 1)

Diode (Level 3) Prompt photocurrent radiation model

Diode (Level 4) New! Generic photocurrent source model

Independent Voltage Source (VSRC)

Independent Current Source (ISRC)

Voltage Controlled Voltage Source

(VCVS)
Voltage Controlled Current Source

(VCCS)
Current Controlled Voltage Source

(CCVS)
Voltage Controlled Current Source

(CCCS)
Nonlinear Dependent Source (B

Source)
Bipolar Junction Transistor

(BJT)(Level 1)
Bipolar Junction Transistor

(BJT)(Level 2)
Prompt photocurrent radiation model.

Bipolar Junction Transistor

(BJT)(Level 3)
Neutron-effects model.

Bipolar Junction Transistor

(BJT)(Level 4)
Prompt photocurrent radiation model (same as level 2).
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Device Comments

Junction Field Effect Transistor

(JFET) (Level 1)
SPICE-compatible JFET model.

Junction Field Effect Transistor

(JFET) (Level 2)
New! Shockley JFET model.

MESFET New!

MOSFET (Level 1)

MOSFET (Level 3)

MOSFET (Level 9) BSIM3 model.

MOSFET (Level 10) New! BSIM SOI model.

MOSFET (Level 18) VDMOS model.

MOSFET (Level 19) VDMOS photocurrent model.

Transmission Line Lossless.

Controlled Switch (S,W)

(VSWITCH/ISWITCH)
New! Voltage or current controlled.

Generic Switch (SW) New! Controlled by an expression.

PDE Devices (Level 1) one-dimensional

PDE Devices (Level 2) two-dimensional

Table 1.1: Devices Supported by Xyce.

1.3 Description of Document
For the user, this document contains a description of the Xyce Parallel Electronic Simula-
tor, in which the following topics are specifically addressed. Chapter 2 gives a quick-start
guide to installing and running Xyce. Chapter 3 gives some examples of using the code.
Chapters 4 through 7 describe the netlist language and its usage in Xyce. Chapter 8 cov-
ers the use of continuation algorithms, which is a unique capability for a circuit code such
as Xyce. This is followed by Chapter 9 that covers analyzing the results output by the code.
Chapter 10 provides guidance for running Xyce in parallel. The final chapter, Chapter 11
described the usage of mesh-based TCAD devices, which are based on solving a set of
discretized partial differential equations (PDE) on a mesh, similar to commercial device
simulators such as Medici.
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1.4 Reference Guide
A companion document, the Xyce Reference Guide [3], contains more detailed information
about a number of topics. Included in this document is a netlist reference for the input-
file commands and elements supported within Xyce; a command line reference, which
describes the available command line arguments for Xyce; and quick-references for users
of other circuit codes, such as Orcad’s PSpice [4] and Sandia’s ChileSPICE.

1.5 How to Use this Guide
This guide is designed so you can quickly find the information you need to use Xyce. It
assumes that you are familiar with basic Unix-type commands, how Unix manages applica-
tions and files to perform routine tasks (e.g., starting applications, opening files and saving
your work).

Typographical conventions

Before continuing in this Users’ Guide, it is important to understand the terms and typo-
graphical conventions used. Procedures for performing an operation are generally num-
bered with the following typographical conventions.
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Notation Example Description

Verbatim text > xmpirun -np 4

Commands entered from
the keyboard on the
command line or text
entered in a netlist. The
initial > character is
intended to represent the
shell prompt.

Bold Roman Font
Set nominal temperature
using the TNOM option.

SPICE-type parameters
used in models, etc.

Gray Shaded Text DEBUGLEVEL
Feature that is designed
primarily for use by Xyce
developers.

[text in brackets] Xyce [options] <netlist> Optional parameters.

<text in angle brackets> Xyce [options] <netlist>
Parameters to be inserted
by the user.

<object with asterisk>* K1 <ind. 1> [<ind. n>*]
Parameter that may be
multiply specified.

<TEXT1|TEXT2>
.PRINT TRAN
+ DELIMITER=<TAB|COMMA>

Parameters that may only
take specified values.

Table 1.2. Xyce typographical conventions.
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2. Installing and Running
Xyce

Chapter Overview
This chapter describes the basic mechanics of installing and running Xyce. It includes the
following sections:

� Section 2.1, Xyce Installation

� Section 2.2, Running Xyce

21
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2.1 Xyce Installation

To obtain a copy of Xyce, contact the development team at http://www.cs.sandia.gov/xyce.

The installation procedure differs depending upon the operating system. Follow the in-
structions below to properly install Xyce.

Installing Xyce on UNIX

Xyce is installed from the command line. Users of Linux, BSD, IRIX, and other UNIX
variants should follow this section. Examples are given for reference.

Instructions Examples

Installation packages are named
according the target operating system and
architecture (parallel or serial).

Install_Xyce_linux.tar.gz (serial)
Install_Xyce_linux_MPI.tar.gz
(parallel)

Unpack the appropriate package for your
platform. A similarly named installation
directory is then created.

> gzip -d Install_Xyce_linux.tar.gz
> tar xf Install_Xyce_linux.tar

Enter this directory and run the
installation shell script.

> cd Install_Xyce_linux
> sh install_linux.sh

Provide the requested information.
Where should Xyce be installed?
/usr/local/Xyce-3.0

Installing Xyce on Microsoft Windows

The installation package is named Install_Xyce_windows.zip. This example illustrates
the procedure for Windows XP Professional. Similar steps may be followed for other ver-
sions of Windows.
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Figure 2.1. Obtain a copy of the installation package. Double
click the file name to begin.
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Figure 2.2. By default, Windows will display the contents of the
zip file as shown above. Select Extract all Files to continue.

Users of programs such as WinZip, PKZip, Winrar, etc.,
may follow the decompression steps associated with those
programs, and continue from Figure 2.6.
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Figure 2.3. Click Next on the Extraction Wizard.
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Figure 2.4. Select a destination for the archive contents and click
Next.
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Figure 2.5. Select Show extracted files and click Finish.
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Figure 2.6. The contents of the extracted zip file are shown.
Open the folder named Install Xyce windows.
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Figure 2.7. Double click Setup to begin.
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Figure 2.8. A command line window will open. Follow the on-
screen instructions to proceed.
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Figure 2.9. Status messages will display during setup. Confir-
mation of success will appear once all components are installed.

Important Notes

Completing the steps above will unpack Xyce to the specified directory. IMPORTANT
NOTE: if installing both serial and parallel versions of Xyce, you must specify differ-
ent directories for each installation location. Failure to use different directories will
cause the second installation to overwrite parts of the first and will likely yield an
install that does not function. Under the specified installation directories, the following
subdirectories will be created:

� bin contains the executable used to start Xyce. The executable name will vary de-
pending on the target operating system and architecture.

– runxyce is the shell script for starting serial Xyce on Unix platforms.

– runxyce.bat is the batch file for starting serial Xyce on Windows.

– xmpirun is the wrapper script for mpirun used for running Xyce in parallel mode.
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� doc contains the Xyce Users’ Guide, comprehensive Reference Guide, and Release
Notes. Read these for more information about this release and for detailed instruc-
tions on how to use Xyce.

� lib contains configuration files, libraries, and metadata for Xyce.

� test contains sample netlists and verification tools.

2.2 Running Xyce
ChileCAD [5], a GUI for Xyce is under development and will eventually become part of
the overall simulation framework. This section only describes how Xyce is run from the
command line, for both serial and MPI parallel simulations.

Command Line Simulation

Running Xyce from the command line is straightforward. The scripts xmpirun and runxyce
set up the runtime environment and execute Xyce. Help with accessing the command line
on Microsoft Windows is available at the end of this chapter. Depending on whether you
are using a version compiled with MPI support or a serial version, there are two ways to
begin running Xyce:

� Running serial Xyce:

> runxyce [options] <netlist filename>

� Running Xyce in parallel:

> xmpirun -np <# procs> [options] <netlist filename>

where [options] are the command line arguments for Xyce. For example, to log output to
a file named sample.log type:

> runxyce -l sample.log <netlist filename>

The next example runs parallel Xyce on four processors and places the results into a
comma separated value file named results.csv:

> xmpirun -np 4 -delim COMMA -o results.csv <netlist filename>

32



2.2 Running Xyce XyceTM Users’ Guide

These examples assume that <netlist filename> is either in the current working direc-
tory or includes the path (full or relative) to the netlist file. Enclose the filename in quotation
marks (” ”) if the path contains spaces. Help is accessible with the -h option.

For MPI runs, [options] may also include command line arguments to mpirun. Consult the
documentation installed with MPI on your platform for more details on MPI options. The
-np <# procs> denotes the number of processors to use for the simulation. NOTE: It is
critical that the number of processors used is less than the number of devices and voltage
nodes in the netlist. The appropriate script used to run Xyce for each supported platform
is listed in the Table 2.1.

Computer
Architecture OS Serial Executable MPI Executable

Apple PPC OSX

runxyce

Not Available

HP/Compaq Tru64

xmpirun
SGI 64 bit IRIX 6.5

Intel X86 Linux

Intel X86 FreeBSD

Intel X86
Microsoft
Windows
XP

runxyce.bat Not Available

Table 2.1. Platform scripts for running Xyce.

While Xyce is running, the progress of the simulation is output to the command line window.

Command Line Options

Xyce supports a handful of command line options which must be given before the netlist
filename. The general usage is:

runxyce [options] <netlist filename>

Table 2.2 lists the available command line options.

Argument Description Usage Default

-h Help option. Prints usage and exits. -h -

-v Prints the version banner and exits. -v -
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Argument Description Usage Default

-delim Set the output file field delimiter. -delim

<TAB|COMMA|string>
-

-o Place the results into specified file. -o <file> -

-l Place the log output into specified file. -l <file> -

-nox Use the NOX nonlinear solver. -nox <on|off> on

-linsolv Set the linear solver.
-linsolv

<ksparse|klu|
superlu|aztecoo>

klu(serial)

aztecoo(paralel)

Table 2.2: List of Xyce command line arguments.

While these options are intended for general use, others may exist for new features that
are disabled by default, and older features that are no longer supported. See the Xyce
Reference Guide for a comprehensive list that also includes trial and deprecated options.

Running Xyce in Parallel

A parallel version of Xyce is available for several different platforms as shown in Table 2.1.
Running Xyce in parallel requires the script xmpirun to be used with the appropriate pa-
rameters. For example, to run Xyce on two processors with an example netlist, type:

xmpirun -np 2 anExampleNetlist.cir

In general the number of processors is specified by using the -np argument to the appro-
priate mpirun command. Some specific considerations are given below.

Running Xyce under MPICH

The MPICH implementation of MPI requires that there exist a file of machines on which to
run. On RedHat Linux this is installed in /usr/lib/mpich/share. On FreeBSD this is installed
in /usr/local/mpich/share. This file must contain one line for each machine on which a pro-
cess may be started. If you do not have write access to the directory in which the default
machines file is stored you may specify an alternate file with the -machinefile <machinefilename>
option to mpirun.

MPICH executes parallel jobs by using the remote shell (rsh) or secure shell (ssh) to the
target machine. You might, therefore, be prompted for a password when starting up a
multiple processor job.
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Running Xyce under LAM MPI

Unlike MPICH, LAM MPI requires a daemon process to be running on each machine that
will service parallel jobs. This daemon is started by using the lamboot program. By default,
lamboot will run a daemon on the local machine, but it may be given a file name containing
a list of machines for multiple-machine jobs. Consult the bhost man page for the format of
the file.

lamboot runs a program called lamd which will remain running until it is halted. As long
as lamd is running you may continue to run parallel jobs. Halt lamd using the lamhalt
command.

Guidance

This chapter has given the basic mechanics of running Xyce in parallel. For general guid-
ance regarding solver options, partitioning options, and other parallel issues, refer to chap-
ter 10. Distributed memory circuit simulation still contains a number of research issues, so
obtaining an optimal simulation in parallel is a bit of an art.

Accessing the Microsoft Windows Command Line

Follow the steps below for help with accessing the command line on Windows XP Profes-
sional. Consult the operating system documentation for assistance with other versions of
Windows.

Figure 2.10. From the Start menu, click Run....
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Figure 2.11. Type cmd and click OK to open the command line
window.

Figure 2.12. The command line window appears and is ready
for use.

The following is an illustrated recap of the Command Line Simulation instructions provided
earlier.
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Figure 2.13. Type the full path to the runxyce file to execute
Xyce. Note that the path must be enclosed in quotation marks if it
contains spaces.
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Figure 2.14. Using runxyce without any options or a netlist file-
name displays a brief help menu.
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Figure 2.15. To begin a simulation type the path to runxyce
followed by the netlist filename.
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Figure 2.16. Output will scroll to the screen. Use runxyce -h for
assistance with command line options.
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3. Simulation Examples
with Xyce

Chapter Overview
This chapter provides several simple examples of Xyce usage. An example circuit is pro-
vided for each available analysis type.

� Section 3.1, Example Circuit Construction

� Section 3.2, DC Sweep Analysis

� Section 3.3, Transient Analysis
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3.1 Example Circuit Construction
This section describes how to use Xyce to create the simple diode clipper circuit shown in
Figure 3.1.

While a schematic edit and capture capability is under development, Xyce currently only
supports circuit creation via netlist editing. Xyce supports most of the standard netlist
entries common to Berkeley SPICE 3F5 and Orcad PSpice. For users who are familiar
with PSpice netlists, the differences between PSpice and Xyce netlists are listed in the
Xyce Reference Guide [3].

Example: diode clipper circuit

1. Open a new netlist file using a standard text editor (e.g. VI, Emacs, Notepad, etc.).

2. Type the title on the first line of the netlist:

Diode Clipper Circuit

3. Create a 5V DC voltage source between nodes 1 and 0 by typing the following on a
new line:

VCC 1 0 5V

4. Create another DC voltage source between nodes 3 and 0 by entering the following
on a new line:

VIN 3 0 0V

5. Place the diodes in the circuit between nodes 2 and 1, and nodes 0 and 2, respec-
tively, by entering the following lines:

D1 2 1 D1N3940
D2 0 2 D1N3940

6. Enter resistors R1, R2, R3 and R4, respectively:

R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K

7. Place the capacitor in the circuit:
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C1 2 4 0.47u

8. Add the diode model to the netlist to complete it as Figure 3.2.

9. Complete the netlist by entering .END on the last line in the file. Save the file as
clipper.cir. The complete netlist is shown in Figure 3.2 and the schematic in
Figure 3.1.

The netlist in Figure 3.2 illustrates some of the syntax of a netlist input file. Netlists begin
with a title (e.g. “Diode Clipper Circuit”), support comments (lines beginning with the
“*” character), devices, model definitions and the “.END” statement.

This netlist file is not yet complete and will not run properly using Xyce (see Section 2.2
for instructions on running Xyce) as it lacks an analysis statement. As you proceed in this
chapter, you will see how to add the appropriate analysis statement and run the clipper
circuit.

Figure 3.1. Schematic of diode clipper circuit with DC and tran-
sient voltage sources.
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Diode Clipper Circuit
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.2. Diode clipper circuit netlist.
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3.2 DC Sweep Analysis
In this section an example is given of DC sweep analysis using Xyce. The DC response
of the clipper circuit is obtained by sweeping the DC voltage source (Vin) from -10 to 15
volts in 1 volt steps. For more details about DC analysis see Chapter 7.3 of this manual or
the Xyce Reference Guide [3].

Example: DC sweep analysis

To set up and run a DC sweep analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file (clipper.cir) using a standard text editor
(e.g. VI, Emacs, Notepad, etc.).

2. Enter the analysis control statement in the netlist:

.DC VIN -10 15 1

3. Enter the output control statement:

.PRINT DC V(3) V(2) V(4)

4. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce:

> runxyce clipper.cir

5. Open the results file (clipper.cir.prn) and examine (or plot) the output voltages that
were calculated for nodes 3 (Vin), 2 and 4 (Out). Figure 3.4 shows the output plotted
as a function of the swept variable Vin.

Figure 3.4. DC sweep voltages at Vin, node 2 and Vout.
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Diode Clipper Circuit with DC sweep analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.3. Diode clipper circuit netlist for DC sweep analysis.
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3.3 Transient Analysis

This section contains an example of transient analysis in Xyce. In this example the DC
clipper circuit of the previous section has been modified so that the input voltage source
(Vin) is a time-dependent sinusoidal input source. The frequency of Vin is 1 kHz, and has
an amplitude of 10 volts. For more details about transient analysis see Chapter 7.2 of this
manual, or see the Xyce Reference Guide [3].

Example: transient analysis

To set up and run a transient analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file file (clipper.cir) using a standard text editor
(e.g. VI, Emacs, Notepad, etc.).

2. If you added DC analysis and output statements in the previous example (Figure 3.4),
remove them.

3. Enter the analysis control in the netlist:

.TRAN 2ns 2ms

4. Enter the output control statement:

.PRINT TRAN V(3) V(2) V(4)

5. Modify the input voltage source (Vin) to generate the sinusoidal input signal:

VIN 3 0 SIN(10V 1kHz)

6. At this point, the netlist should look similar to the netlist in Figure 3.5. Save the netlist
file and run Xyce on the circuit. For example, to run serial Xyce:

> runxyce clipper.cir

7. Open the results file and examine (or plot) the output voltages for nodes 3 (Vin), 2
and 4 (Out). The plot in Figure 3.6 shows the output plotted as a function of time.

The modified netlist is shown in Figure 3.5, and the corresponding results in Figure 3.6.
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Diode Clipper Circuit with transient analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3.5. Diode clipper circuit netlist for transient analysis.
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Figure 3.6. Sinusoidal input signal and clipped outputs.
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4. Netlist Basics

Chapter Overview
This chapter contains introductory material on netlist syntax and usage. Sections include:

� Section 4.1 General Overview

� Section 4.2 Devices Available for Simulation

� Section 4.3 Parameters and Expressions
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4.1 General Overview

Introduction

Using a netlist to describe a circuit for Xyce is the primary method for running a circuit
simulation. Netlist support within Xyce largely conforms to that used by Berkeley SPICE
3F5 with several new options for controlling functionality unique to Xyce. In a netlist, the
circuit is described by a set of element lines which define the circuit elements, their values,
the circuit topology (i.e. the connection of the circuit elements), and a variety of control
options for the simulation. The first line in the netlist file must be a title and the last line
must be “.END”. Between these two constraints, the order of the statements is irrelevant.

Netlist Elements

An element line, for which the format is determined by the specific element type, defines
each circuit element instance. The general format is given by:

<type><name> <node information> <element information...>

The <type> must be a letter (A through Z) and the <name> follows immediately. For ex-
ample, RARESISTOR specifies a device of type “R” (for “Resistor”) with a name ARESISTOR.
Nodes are separated by spaces, and additional element information required by the device
is given after the node list as described in the Netlist Reference section of the Xyce Refer-
ence Guide [3]. Xyce ignores character case when reading a netlist such that RARESISTOR
is equivalent to raresistor. The only exception to this case insensitivity occurs when in-
cluding external files in a netlist where the filename specified in the netlist must have the
same case as the actual filename.

A number field may be an integer or a floating-point value. Either one may be followed by
one of the following scaling factors:
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Symbol Equivalent Value

T 1012

G 109

Meg 106

K 103

mil 25.4−6

m 10−3

u (µ) 10−6

n 10−9

p 10−12

f 10−15

Node information is given in terms of node names, which are arbitrary character strings.
The only requirement is that the ground node is named ’0’. There are some restrictions on
the circuit topology:

� There can be no loop of voltage sources and/or inductors.

� There can be no cut-set of current sources and/or capacitors.

� Every node must have a DC path to ground.

� Every node must have at least two connections (with the exception of unterminated
transmission lines and MOSFET substrate nodes).

The following line provides an example of an element line that defines a resistor between
nodes 1 and 3 with a resistance value of 10kΩ.

Example: RARESISTOR 1 3 10K

Title, Comments and End

The first line of the netlist is the title line of the netlist. This line is treated as a comment
even if it does not begin with an asterisk. It is a common mistake to forget the meaning of
this first line and begin the circuit elements on the first line; doing so will probably result in
a parsing error.

Example: Test RLC Circuit
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The “.END” line must be the last line in the netlist.

Example: .END

Comments are supported in netlists and are indicated by placing an asterisk at the be-
ginning of the comment line. They may occur anywhere in the netlist but they must be
at the beginning of a line. Xyce also supports in-line comments. An in-line comment is
designated by a semicolon and may occur on any line. Everything after the semicolon is
taken as a comment and ignored. Any line that begins with leading white space is also
considered to be a comment.

Example: * This is a netlist comment.

Example: WRONG:.DC .... * This type of in-line comment is not supported.

Example: .DC .... ; This type of in-line comment is supported.

Continuation Lines

Any line that begins with a + symbol is a continuation line. Its contents are appended to
those of the previous line. If the previous line or lines were comments, the continuation line
is appended to the first non-comment line preceding it.

Netlist Commands

Command elements are used to describe the analysis being defined by the netlist. Exam-
ples include analysis types, initial conditions, device models and output control. The Xyce
Reference Guide [3] contains a reference for these commands.

Example: .PRINT TRAN V(Vout)

Analog Devices

The analog devices supported include most of the standard circuit components normally
found in circuit simulators such as SPICE 3F5, PSpice, etc., plus several Sandia specific
devices.

Example: D CR303 N 0065 0 D159700

To find out more about analog devices see the Xyce Reference Guide [3].
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4.2 Devices Available for Simulation
This section describes the different types of analog devices supported in Xyce. These
include standard analog devices, sources (dependent and independent) and subcircuits.
Each device description has the following information:

� A description and an example of the netlist syntax

� The corresponding model types and descriptions, where applicable

� The corresponding lists of model parameters and descriptions, where applicable

� The associated circuit diagram and model equations, as necessary

These analog devices include all of the standard circuit components needed for most ana-
log circuits. User defined models may also be implemented using the .MODEL (model
definition) statement and macromodels as subcircuits using the .SUBCKT (subcircuit) state-
ment.

Analog Devices

Xyce supports many analog devices, including sources, subcircuits and behavioral mod-
els. The devices are classified into device types, each of which can have one or more
model types. For example, the BJT device type has two model types: NPN and PNP.

The device element statements in the netlist always start with the name of the individual
device instance. The first letter of the name determines the device type. The format of
the following information depends on the device type and its parameters. The Device Type
summary table, Table 4.1, lists all of the analog devices supported by Xyce. Each standard
device is then described in more detail in the following sections. Except where noted, the
devices are based upon those found in [6].

Table 4.1 is a summary of the analog device types and the form of their netlist formats. For
a more complete description of the syntax for supported devices, see the Xyce Reference
Guide. [3].

Device Type Designator

Letter
Typical Netlist Format

Nonlinear Dependent

Source (B Source)
B

B<name> <+ node> <- node>

+ <I or V>={<expression>}

Capacitor C
C<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

Diode D
D<name> <anode node> <cathode node>

+ <model name> [area value]
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Device Type Designator

Letter
Typical Netlist Format

Voltage Controlled

Voltage Source
E

E<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <gain>
Current Controlled

Current Source
F

F<name> <+ node> <- node>

+ <controlling V device name> <gain>
Voltage Controlled

Current Source
G

G<name> <+ node> <- node> <+ controlling node>

+ <- controlling node> <transconductance>
Current Controlled

Voltage Source
H

H<name> <+ node> <- node>

+ <controlling V device name> <gain>
Independent Current

Source
I

I<name> <+ node> <- node> [[DC] <value>]

+ [transient specification]

Mutual Inductor K
K<name> <inductor 1> [<ind. n>*]

+ <linear coupling or model>

Inductor L
L<name> <+ node> <- node> [model name] <value>

+ [IC=<initial value>]

JFET J
J<name> <drain node> <gate node> <source node>

+ <model name> [area value]

MOSFET M
M<name> <drain node> <gate node> <source node>

+ <bulk/substrate node> [SOI node(s)]
+ <model name> [common model parameter]*

Bipolar Junction

Transistor (BJT)
Q

Q<name> <collector node> <base node>

+ <emitter node> [substrate node] [SOI node(s)]
+ <model name> [area value]

Resistor R
R<name> <+ node> <- node> [model name] <value>

+ [L=<length>] [W=<width>]

Voltage Controlled

Switch
S

S<name> <+ switch node> <- switch node>

+ <+ controlling node> <- controlling node>
+ <model name>

Transmission Line T
T<name> <A port + node> <A port - node>

+ <B port + node> <B port - node>
+ <ideal specification>

Independent Voltage

Source
V

V<name> <+ node> <- node> [[DC] <value>]

+ [transient specification]

Subcircuit X
X<name> [node]* <subcircuit name>

+ [PARAMS:[<name>=<value>]*]
Current Controlled

Switch
W

W<name> <+ switch node> <- switch node>

+ <controlling V device name> <model name>
PDE Devices YPDE YPDE <name> [node]* <model name>

MESFET Z
Z<name> <drain node> <gate node> <source node>

+ <model name> [area value]
Table 4.1: Analog Device Quick Reference.
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4.3 Parameters and Expressions
In addition to explicit values, the user may use parameters and expressions to symbolize
numeric values in the circuit design.

Parameters

A parameter is like a programming variable that represents a numeric value by name. Once
you have defined a parameter (declared its name and given it a value) at a particular level
in the circuit hierarchy, you can use it to represent circuit values at that level or any level
directly beneath it in the circuit hierarchy. One way that you can use parameters is to apply
the same value to multiple part instances.

How to Declare and Use Parameters

In order to use a global parameter in a circuit, one must:

� define the parameter using a .PARAM statement within a netlist

� replace an explicit value with the parameter in the circuit

Note that Xyce reserves several keywords that may not be used as parameter names.
These are:

� Time

� Vt

� Temp

� GMIN

However, in this release of Xyce, only Time is predefined.

Limitations on parameter definitions

The value of a parameter defined with the .PARAM statement is computed at the time the
netlist is loaded, and must evaluate to a constant at that time. All terms in the expression
defining the parameter must therefore be constants known at the beginning of the run. It
is not legal to use any time-dependent expressions in parameter declarations (either by
including voltage nodes or currents, or by including reference to the variable TIME).
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Example: Declaring a parameter

1. Locate the level in the circuit hierarchy at which the .PARAM statement declaring a
parameter will be placed. (Note: a global parameter that can be used anywhere in
the netlist can be declared by placing the .PARAM statement at the top-most level of
the circuit.)

2. Name the parameter and give it a value. The value can be numeric or given by an
expression:

.SUBCKT subckt1 n1 n2 n3

.PARAM res = 100
*
* other netlist statements here
*
.ENDS

3. Note: the parameter res can be used anywhere within the subcircuit subckt1 includ-
ing subcircuits defined within it, but cannot be used outside of subckt1.

Example: Using a parameter in the circuit

1. Find the numeric value that is to be replaced by a parameter: a device instance
parameter value, model parameter value, etc. The value being replaced must be
accessible with the current hierarchy level.

2. Replace the numeric value with the parameter name contained within braces ({}) as
in:

R1 1 2 {res}

Expressions

In Xyce, an expression is a mathematical relationship that may be used any place one
would use a number (numeric or boolean). Except in the case of expressions used in
analog behavioral modeling sources (see Chapter 6) Xyce evaluates the expression to a
value when it reads in the circuit netlist, not each time its value is needed. It is therefore
necessary that all terms in an expression be known at the beginning of the run.

To use an expression in a circuit netlist:

1. Locate the value to be replaced (component, model parameter, etc.).

2. Substitute the value with an expression utilizing the {} syntax:

{expression}
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where expression can contain any of the following:

� available operators from those in Table 4.2

� included functions from those in Table 4.3, Table 4.4, and Table 4.5

� user-defined functions

� user-defined parameters that are within scope

� literal operands

The braces ({}) instruct Xyce to evaluate the expression and use the resulting value.

Additional time-dependent constructs are available in expressions used in analog
behavioral modeling sources (see Chapter 6).

Example: Using an expression

Scaling the DC voltage of a 12V independent voltage source, designated VF, by some
factor can be accomplished by the following netlist statements (in this example the factor
is 1.5):

.PARAM FACTORV=1.5
VF 3 4 {FACTORV*12}

Xyce will evaluate the expression to 12 ∗ 1.5 or 18 volts.

1Logical and relational operators are used only with the IF() function.
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Class of
operator Operator Meaning

arithmetic + addition or string concatenation

- subtraction

* multiplication

/ division

** exponentiation

logical1 ~ unary NOT

| boolean OR

^ boolean XOR

& boolean AND

relational == equality

!= non-equality

> greater-than

>= greater-than or equal

< less-than

<= less-than or equal

Table 4.2. Expression operators
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Function Meaning Explanation

ABS(x) |x| absolute value of x

DDT(x) d
dtx(t) time derivative of x

IF(t,x,y) x if t is true,
t is an expression using the relational
operators in Table 4.2

y otherwise

LIMIT(x,y,z) y if y < x

x if y < x < z x limited to range y to z

z if x < z

M(x) |x| absolute value of x

MIN(x,y) min(x, y) minimum of x and y

MAX(x,y) max(x, y) maximum of x and y

PWR(x,y) xy x raised to y power

PWRS(x,y) xy if x > 0

0 if x = 0 sign corrected x raised to y power

−(−x)y if x < 0

RAND() 0 < result < 1 random constant number between 0 and 1

SDT(x)
∫

x(t)dt time integral of x

SGN(x) +1 if x > 0

0 if x = 0 sign value of x

-1 if x < 0

STP(x) 1 if x > 0 step function

0 otherwise

SQRT(x)
√

x square root of x

TABLE(x,y,z,*) f(x) where f(y) = z
piecewise linear interpolation, multiple (y,z)
pairs can be specified

URAMP(x) x if x > 0 ramp function

0 otherwise

Table 4.3. Arithmetic Functions in Expressions
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Function Meaning Explanation

ACOS(x) arccos(x) result in radians

ACOSH(x) cosh−1(x) hyperbolic arccosine of x

ARCTAN(x) arctan(x) result in radians

ASIN(x) arcsin(x) result in radians

ASINH(x) sinh−1(x) hyperbolic arcsine of x

ATAN(x) arctan(x) result in radians

ATANH(x) tanh−1(x) hyperbolic arctangent of x

ATAN2(x,y) arctan(x/y) result in radians

COS(x) cos(x) x in radians

COSH(x) cosh(x) hyperbolic cosine of x

EXP(x) ex e to the x power

LN(x) ln(x) log base e

LOG(x) log(x) log base 10

LOG10(x) log(x) log base 10

SIN(x) sin(x) x in radians

SINH(x) sinh(x) hyperbolic sine of x

TAN(x) tan(x) x in radians

TANH(x) tanh(x) hyperbolic tangent of x

Table 4.4. Exponential, Logarithmic, and Trigonometric Func-
tions in Expressions
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Function Meaning Explanation

SPICE EXP(V1,V2, SPICE style exponential

TD1,TAU1,TD2,TAU2) (function of time)

V1 = initial value

V2 = pulsed value

TD1 = rise delay time

TAU1 = rise time constant

TD2 = fall delay time

TAU2 = fall time constant

SPICE PULSE(V1,V2, SPICE style pulse

TD,TR,TF,PW,PER) (function of time)

V1 = initial value

V2 = pulsed value

TD = delay

TR = rise time

TF = fall time

PW = pulse width

PER = period

SPICE SFFM(V0,VA, SPICE style single frequency FM

FC,MDI,FS) (function of time)

V0 = offset

VA = amplitude

FC = carrier frequency

MDI = modulation index

FS = signal frequency

SPICE SIN(V0,VA SPICE style sine wave

FREQ,TD,THETA) (function of time)

V0 = offset

VA = amplitude

FREQ = frequency (hz)

TD = delay

THETA = damping factor

Table 4.5. SPICE Compatibility Functions in Expressions
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5. Working with .MODEL
Statements and Subcircuit
Models

Chapter Overview
This chapter contains model ideas and a summary of the ways to create and modify mod-
els. Sections include:

� Section 5.1, Definition of a Model

� Section 5.2, Model Organization
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5.1 Definition of a Model
A model describes the electrical performance of a part, such as a specific vendor’s version
of a 2N2222 transistor. To simulate a part requires specification of simulation properties.
These properties define the model of the part.

Depending on the given device type and the requirements of the circuit design, a model is
specified using a model parameter set, a subcircuit netlist, or both.

In general, model parameter sets define the parameters used in ideal models of specific
device types, and subcircuit netlists allow the user to combine ideal device models to sim-
ulate more complex effects. For example, one could simulate a bipolar transistor using the
Xyce BJT device by specifying model parameters extracted to fit the simulation behavior to
the behavior of the part used, or one could develop a subcircuit macro-model of a capacitor
that adds effects like lead inductance and resistance to the basic capacitor device.

Both methods of defining a model use a netlist format, with precise syntax rules as de-
scribed below.

Defining models using model parameters

Xyce currently has no built-in part models. However, models can be defined for a device by
changing some or all of the model parameters from their defaults via the .MODEL statement.
For example:

M5 3 2 1 0 MLOAD1
.MODEL MLOAD1 NMOS (LEVEL=3 VTO=0.5 CJ=0.025pF)

This example defines a MOSFET device M5 that is an instance of a part described by
the model parameter set MLOAD1. The MLOAD1 parameter set is defined in the .MODEL
statement.

Most device types in Xyce support some form of model parameters. Consult the Xyce
Reference Guide [3] for the model parameters supported by each device type.

Defining models using subcircuit netlists

In Xyce, models may also be defined using the subcircuit syntax: .SUBCKT/.ENDS. This
syntax includes:

� netlists to define the configuration and function of the part.
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� variable input parameters to modify the model.

See Figure 5.1 for an example.

****other devices
X5 5 6 7 8 l3dsc1 PARAMS: ScaleFac=2.0
X6 9 10 11 12 l3dsc1
****more netlist commands

*** SUBCIRCUIT: l3dsc1
*** Parasitic Model: microstrip
*** Only one segment
.SUBCKT l3dsc1 1 3 2 4 PARAMS: ScaleFac=1.0
C01 1 0 4.540e-12
RG01 1 0 7.816e+03
L1 1 5 3.718e-08
R1 5 2 4.300e-01
C1 2 0 4.540e-12
RG1 2 0 7.816e+03
C02 3 0 4.540e-12
RG02 3 0 7.816e+03
L2 3 6 3.668e-08
R2 6 4 4.184e-01
C2 4 0 4.540e-12
RG2 4 0 7.816e+03
CM012 1 3 5.288e-13
KM12 L1 L2 2.229e-01
CM12 2 4 {5.288e-13*ScaleFac}
.ENDS

Figure 5.1. Example subcircuit model.

In this example, a subcircuit model called l3dsc1 implementing one part of a microstrip
transmission line is defined between the .SUBCKT/.ENDS lines, and two different instances
of the subcircuit are used in the X lines. This somewhat artificial example shows how input
parameters are used; the last capacitor in the subcircuit is scaled by the input parameter
ScaleFac. If input parameters are not specified on the X line (as in the case of device X6),
then the default values specified on the .SUBCKT line are used. Non-default values are
specified on the X line using the PARAMS: keyword. For precise syntax consult the Xyce
Reference Guide [3].
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Subcircuit Hierarchy

Xyce supports the definition of subcircuits within other subcircuits. Each subcircuit defini-
tion introduces a new level in the circuit hierarchy with the top level being the main circuit. If
a second level is defined, it is composed of the subcircuits in the main circuit and each sub-
sequent level is composed of the subcircuits contained in the previous level. A subcircuit
may also contain other definitions such as models via the .MODEL statement, parameters
via the .PARAM statement, and functions via the .FUNC statement.

In this context, the subcircuit defines the “scope” for the definitions it contains. That is,
the definitions contained within a subcircuit can be used within that subcircuit and/or within
any subcircuit it contains. Any definitions occurring in the main circuit have global scope
and can be used anywhere in the circuit. A name, such as a model, parameter, function or
subcircuit name, occurring in a definition at one level of a circuit hierarchy can be redefined
at any lower level contained directly by the subcircuit. In this case, the new definition
applies at the given level and those below.

In the following example, the model named MOD1 can be used in subcircuits SUB1 and SUB2
but not in the subcircuit SUB3. The parameter P1 has a value of 10 in subcircuit SUB1 and a
value of 20 in subcircuit SUB2.

.SUBCKT SUB1 1 2 3 4

.MODEL MOD1 NMOS(LEVEL=2)

.PARAM P1=10
*
* subcircuit devices omitted for brevity
*
.SUBCKT SUB2 1 3 2 4
.PARAM P1=20
*
* subcircuit devices omitted for brevity
*
.ENDS
.ENDS

.SUBCKT SUB3 1 2 3 4
*
* subcircuit devices omitted for brevity
*
.ENDS

Figure 5.2. Example subcircuit model.
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5.2 Model Organization
While it is always possible to make a self-contained netlist in which all models for all
parts are included along with the circuit definition, it is often more convenient to orga-
nize frequently-used models into separate model libraries. Xyce provides a very simple
mechanism that allows this organization. Models are simply collected into model library
files, and then accessed by netlists as needed by insertion of an .INCLUDE directive. This
section describes the process in detail.

Model libraries

Device model and subcircuit definitions may be organized into model libraries. These
libraries are text files (similar to netlist files) that have one or more model definitions. Many
users choose to give model library files names that end with .lib, but the file may be
named using any convention the user chooses.

In general, most users create model libraries files that typically include similar model types.
In these files, the header comments describe the models therein.

Model library configuration

In Xyce, model libraries are used by inserting a .INCLUDE statement into a netlist. Once
a file is included, its contents are available to the netlist just as if the entire contents had
been inserted directly into the netlist.

As an example, one might create the following model library file called bjtmodels.lib,
containing .MODEL statements for common types of bipolar junction transistors:

*bjtmodels.lib
* Bipolar transistor models
.MODEL Q2N2222 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=5 Ne=1.307
+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.MODEL 2N3700 NPN (IS=17.2E-15 BF=100)

.MODEL 2N2907A PNP (IS=1.E-12 BF=100)

The models Q2N2222, 2N3700 and 2N2907A could then be used in a netlist by including the
bjtmodels.lib file.
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.INCLUDE "bjtmodels.lib"
Q1 1 2 3 Q2N2222
Q2 5 6 7 2N3700
Q3 8 9 10 2N2907A
*other netlist entries
.END

Because the contents of an included file are simply inserted into the netlist at the point
where the .INCLUDE statement appears, the scoping rules for .INCLUDE statements is the
same as for other types of definitions as outlined in the preceding section. Note that the
path to the library file is assumed to be relative to the execution directory, but absolute
pathnames are permissible. Note also that the entire file name, including its “extension”
must be specified. There is no assumed default extension.
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6. Analog Behavioral
Modeling

Chapter Overview
This chapter contains a description of analog behavioral modeling in Xyce. Sections in-
clude:

� Section 6.1,Overview of Analog Behavioral Modeling

� Section 6.2, Specifying ABM Devices

� Section 6.3, Guidance for ABM Use
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6.1 Overview of Analog Behavioral
Modeling

The analog behavioral modeling capability of Xyce provides for flexible descriptions of
electronic components in terms of a transfer function or lookup table. In other words,
a mathematical relationship is used to model a circuit segment removing the need for
component by component design.

The primary device used for analog behavioral modeling in Xyce is the B device, or non-
linear dependent source. A B device can serve as a voltage or current source, and by
using expressions dependent on voltages and currents elsewhere in the circuit the user
can produce any desired behavior.

6.2 Specifying ABM Devices
ABM devices (B devices) are specified in a netlist the same way as other devices. Cus-
tomizing the operational behavior of the device is achieved by defining an ABM expression
describing how inputs are transformed into outputs.

For example, the pair of lines below would provide exactly the same behavior as a 10K re-
sistor between nodes 1 and 2. It is written to be a current source with the current specified
using Ohm’s law and the constant resistance.

.PARAM Res1=10K
Blinearres 1 2 I={(V(2)-V(1))/Res1}

A nonlinear resistor could be specified similarly:

.PARAM R1=0.15

.PARAM R2=6

.PARAM E2 = {2*E1}

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}

.FUNC Rreg1(a,b,c,d) {a +(b-a)*c/d}

.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2*c-d)**2)*f}

Bnlr 4 2 V = {I(Vmon) * IF(
+ V(101) < E1, Rreg1(R0,R1,V(101),E1),
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+ IF(
+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2
+ )
+ )}

In this example, Bnlr provides a voltage between nodes 4 and 2, and the voltage is de-
termined using Ohm’s law with a resistance that is a function of the voltage on node 101
and a number of parameters. These two examples demonstrate how the B source can be
used either as a voltage source (by specifying V={expression}) or as a current source
(with I={expression}).

Note that unlike expressions used in parameters or function declarations, expressions in
the nonlinear dependent source may contain voltages and currents from other parts of the
circuit, or even explicit time-dependent functions. These expressions are evaluated every
time the current or voltage through the source are needed.

Additional constructs for use in ABM expressions

ABM expressions follow the same rules as other expressions in a netlist with the additional
ability to specify signals (node voltages and voltage source currents) and explicitly time-
dependent functions in the expression. In ABM expressions, refer to signals by name.
Xyce recognizes the following constructs in ABM expressions:

� V(<node name>)

� V(<node name>,<node name>)

� I(<voltage source name>)

� The variable TIME

� Lookup tables

In a hierarchical circuit (a circuit with possibly nested levels of subcircuits), voltage source
names that appear in an ABM expression must be the name of a voltage source in the
same subcircuit as the ABM device. Similarly, node names in an ABM expression must be
the node names of one or more devices in the same subcircuit as the ABM device.

Lookup Tables in Analog Behavioral Modeling

Lookup tables provide a means of specifying a piecewise-linear function in an expression.
A table expression is specified with the keyword TABLE followed by an expression that is
evaluated as the independent variable of the piecewise linear function, followed by a list of
pairs of independent variable/dependent variable values. For example
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Example: B1 1 0 V={TABLE {time} = (0, 0) (1, 2) (2, 4) (3, 6)}

An equivalent example uses the table function, which has a simpler syntax, but which may
be hard to read for long tables:

Example: B1 1 0 V={TABLE(time, 0, 0, 1, 2, 2, 4, 3, 6)}

These examples will produce a voltage source whose voltage is a simple linear function of
time. At t = 0 the voltage is 0 volts, at time t = 1s the voltage is 2 volts, and at times in
between the voltage is determined by linear interpolation.

The independent variable of the table source does not have to be a simple expression:

Example: B1 1 0 V={TABLE {V(5)-V(3)/4+I(V6)*Res1} = (0, 0) (1, 2) (2, 4) (3, 6)}

Alternate behavioral modeling sources

In addition to the primary nonlinear dependent source, the B source, Xyce also supports
the PSpice extensions to the standard Spice voltage- and current-controlled sources, the
E, F, G and H sources. These sources are provided for PSpice compatibility, and are con-
verted internally into B sources. See the Netlist Reference chapter of the Xyce Reference
Guide [3] for the syntax of these compatibility devices.

6.3 Guidance for ABM Use

ABM devices add equations to the problem

It is important that the user keep in mind that Xyce solves a complex nonlinear set of
equations at each time step, that this system of equations is solved iteratively to obtain a
converged solution, and that specifying an ABM device in a Xyce netlist adds one or more
equations to the nonlinear problem that Xyce has to solve. These ABM equations are such
that when the nonlinear problem is converged the voltage drop across the ABM device (or
current through the device) satisfies the expression given. But during the course of the
iterative solution the unconverged values of nodal voltages and currents are not consistent
with each other, do not obey basic physical requirements of circuit solutions (Kirchhoff’s
laws), and might in fact take on values that are nonphysically large or the wrong sign. Only
at the end of the nonlinear iterative solution are the solution variables consistent, legal
values.
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Be sure that all expressions used in ABM devices are valid
for any possible value of their independent variables

While ABM devices look temptingly like calculators, it is potentially dangerous to use them
as such. In the previous subsection, it was stated that during the nonlinear solution of each
timestep’s equations the nodal voltages and currents are usually not consistent, and often
violate Kirchhoff’s laws. Only at the end of the nonlinear solution are all the constraints
on voltages and currents satisfied. This has some important consequences to the user of
ABM devices.

All expressions involving nodal voltages and currents used in ABM devices should be valid
for any possible value they might see — even those that appear to be physically meaning-
less and which a knowledgeable user might never expect to see in the real circuit. This is
particularly important when using square roots or exponentiating to a fractional power. For
example, consider the apparently trivial netlist fragment below:

*...other parts of more complex circuit deleted...
* potentially bad usage of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B1 2 0 V=sqrt(v(1))
r1 2 0 10k
*...other parts of more complex circuit deleted...

This is a contrived example, but demonstrates a potentially dangerous usage. It is as-
sumed, because node 1 is connected to a 5V DC source, that the argument of the square
root function is always positive. However it could be the case that during the nonlinear
solution of the full circuit that an unconverged value of node 1 might be negative. Tracking
down mistakes like this can be difficult, as what tends to happen is that on most platforms
B1 results in a “Not a Number” value for the nodal voltage of node 2, but the program
doesn’t crash. This frequently shows up as inexplicable “Timestep too small” errors.

Such things can be avoided by protecting the arguments of functions with limited domain,
but care needs to be taken when doing this. One obvious way to protect the circuit fragment
above would be to take the absolute value of V(1) before calling the sqrt function:

*...other parts of more complex circuit deleted...
* safer usage of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B1 2 0 V=sqrt(abs(v(1)))
r1 2 0 10k
*...other parts of more complex circuit deleted...
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There are numerous other ways to protect the square root function from negative argu-
ments, such as by using the maximum of zero and V(1). Some alternatives might be more
appropriate than others in different contexts.

Note, though, that it would be a mistake to attempt the absolute value like this:

*...other parts of more complex circuit deleted...
* really bad misuse of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B2 3 0 V=abs(v(1)) ; watch out!
B1 2 0 V=sqrt(v(3)); just as bad as first example!
r1 2 0 10k
*...other parts of more complex circuit deleted...

There are two things wrong with this example — first, node 3 is floating and this alone
could lead to convergence problems. Second, by adding the second ABM device one has
merely created an equation whose solution is that node 3 contains the absolute value of
the voltage on node 1, but until convergence is obtained it is not guaranteed that node 3
will be precisely the absolute value of V(3), nor is it even guaranteed that node 3 will have
a positive voltage.

ABM devices should not be used purely for output
post-processing

Users frequently use ABM devices to provide output post-processing. For example, if a
user was interested in the absolute value, or the log of an output voltage, that user might
create a ABM circuit element that calculated the desired output value.

Using ABM sources in this manner is a bad practice. By creating a circuit element whose
only purpose is post-processing, Xyce is forced to include this bogus device in the circuit,
and the corresponding nonlinear solve. Often, this causes unnecessary solver problems.
If post-processing is the goal, it is much better to use expressions directly on the .PRINT
line. This is a supported capability as of Xyce Release 2.1.

* Bad example
B1 test1 0 V = {(abs(I(VMON)))*1.0e-10}
VIN 1 0 DC 5V
R1 1 2 2K
D1 3 0 DMOD
VMON 2 3 0
.MODEL DMOD D (IS=100FA)
.DC VIN 5 5 1
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.PRINT DC I(VMON) V(3) V(test1)

An example of a “bad use” of ABM sources can be found the above code fragment. The
source B1, is only in the circuit to provide a post-processing output. It doesn’t play a
functional role in the circuit, but Xyce would still be forced to include it in the problem it
is attempting to solve. A much better solution is to get rid of B1, and replace it with an
expression in the .PRINT line. A better solution to the above problem is given here:

* Good example
VIN 1 0 DC 5V
R1 1 2 2K
D1 3 0 DMOD
VMON 2 3 0
.MODEL DMOD D (IS=100FA)
.DC VIN 5 5 1
.PRINT DC I(VMON) V(3) {(abs(I(VMON)))*1.0e-10}

For a more detailed explanation of how to use expressions in the .PRINT line, see sec-
tion 9.1, or the Xyce Reference Guide [3].
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7. Analysis Types

Chapter Overview
This chapter contains a description of the different analysis types available in Xyce. It
includes the following sections:

� Section 7.1, Introduction

� Section 7.2, Transient Analysis

� Section 7.3, DC Analysis

� Section 7.4, STEP Parametric Analysis
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7.1 Introduction
Several simulation analysis options are supported within Xyce. For basic analysis, Xyce
currently supports DC and transient analysis; AC analysis is intended to be supported in a
future release. STEP parametric analysis, which applies an outer parameter loop to either
DC or transient analysis is also available.

7.2 Transient Analysis
The transient response analysis simulates the response of the circuit from TIME=0 to a
specified time. Throughout a transient analysis, any or all of the independent sources may
have time-dependent values.

In Xyce (and most other circuit simulators), the transient analysis begins by performing its
own bias point calculation at the beginning of the run, using the same method as used for
DC sweep. This is required to set the initial conditions for the transient solution as the initial
values of the sources may differ from the their DC values.

.TRAN Statement

To run a transient simulation, the circuit netlist file must contain a .TRAN command.

Example:
.TRAN 100us 300ms
.TRAN 100p 12.05u 9.95u

For a detailed explanation of the .TRAN statement, see the Xyce Reference Guide [3]). In
addition to a .TRAN statement, the netlist must contain one of the following:

� an independent, transient source (see Table 7.1),

� an initial condition on a reactive element, or

� a time-dependent behavioral modeling source (see Chapter 6)

Defining a Time-Dependent (transient) Source

Overview of Source Elements

Source elements, either voltage or current, are entered in the netlist file as described in the
Xyce Reference Guide [3]. Table 7.1 list the time-dependent sources available in Xyce for
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either voltage or current. For voltage sources, the name is preceded by the letter V while
current sources are preceded by the letter I.

Source Element Name Description

EXP Exponential Waveform

PULSE Pulse Waveform

PWL Piecewise Linear Waveform

SFFM Frequency-modulated Waveform

SIN Sinusoidal Waveform

Table 7.1. Summary of time-dependent sources supported by
Xyce.

To use one of these time-dependent or transient sources, the user must place the source
element line in the netlist and characterize the transient behavior using the appropriate
parameters. Each transient source element has a separate set of parameters dependent
on its transient behavior. In this way, the user can create analog sources which produce
sine wave, square pulse, exponential pulse, single-frequency FM, and piecewise linear
waveforms.

Defining Transient Sources

To define a transient source:

� Select one of the supported sources: independent voltage or current source.

� Choose a transient source type from Table 7.1.

� Provide the transient parameters (see the Xyce Reference Guide [3]) to fully define
the source.

Below is an example of an independent sinusoidal voltage source in a circuit netlist. It
creates a voltage source between nodes 1 and 5 that oscillates sinusoidally between -5V
and +5V with a frequency of 50 KHz.

Example: Vexample 1 5 SIN(-5V 5V 50KHz)

Transient Calculation Time Steps

During the simulation, Xyce uses a calculation time step that is continuously adjusted for
accuracy and efficiency (see [7] and [8]). During periods of circuit idleness the calculation
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time step is increased, and during dynamic portions of the waveform it is decreased. The
maximum internal step size can be controlled by specifying the step ceiling value in the
.TRAN command (see the Xyce Reference Guide [3]).

The internal calculation time steps used might not be consistent with the output time steps
requested by the user. By default Xyce outputs solution results at every time step it cal-
culates. If the user selects output timesteps via the .OPTIONS OUTPUT statement (see
Chapter 9) then Xyce will output results for the closest time step that follows the time re-
quested by the user. There is currently no mechanism for forcing Xyce to output at precise
user-specified times.

Checkpointing and Restarting

The .OPTIONS RESTART command (in the netlist) is used to control all checkpoint output
and restarting. Checkpointing and associated restart can be extremely useful for long
simulations. In essence, Xyce allows the user to save the state of the simulation during a
run (at intervals the user specifies) (checkpointing). This checkpoint data can then be read
in to restart the simulation from any of the saved (checkpointed) time points.

Checkpointing Command Format

� .OPTIONS RESTART PACK=<0|1> JOB=<job name> [INITIAL_INTERVAL=<interval>
[<t0> <i0> [<t1> <i1>...]]]

PACK=<0|1> indicates whether the restart data files will contain byte packed data(1)
or not(0). JOB=<job name> identifies the prefix for restart files. The actual restart files
will be the job name appended with the current simulation time (e.g. name1e-05 for
JOB=name and simulation time 1e-05 seconds). Furthermore, the
INITIAL INTERVAL=<interval> identifies the initial interval time used for restart out-
put. The <tx ix> intervals identify times (tx) at which the output interval (ix) will
change. This functionality is identical that described for the .OPTIONS OUTPUT com-
mand (see Section 9.1).

� Example - generate checkpoints at every time step (default):

.OPTIONS RESTART JOB=checkpt

� Example - generate checkpoints every 0.1 µs:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us

� Example - generate unpacked checkpoints every 0.1 µs:

.OPTIONS RESTART PACK=0 JOB=checkpt INITIAL_INTERVAL=0.1us

� Example - Initial interval of 0.1 µs, at 1 µs in the simulation, change to interval of 0.5
µs, and at 10 µs change to an interval of 0.1 µs:
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.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us 1us 0.5us
+ 10us 0.1us

Restarting Command Format

� .OPTIONS RESTART <FILE=<filename> | JOB=<job name> START_TIME=<time>>
+ [INITIAL_INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]]

To restart from an existing restart file, the file can be specified by using either the
FILE=<filename> parameter to explicitly request a file or
JOB=<job name> START TIME=<time> to specify a file prefix and a specific time. The time
must exactly match an output file time for the simulator to correctly load the file. To continue
generating restart output files, INITIAL INTERVAL=<interval> and following intervals can
be appended to the command in the same format as described above.

� Example - Restart from checkpoint file at 0.133 µs:

.OPTIONS RESTART JOB=checkpt START_TIME=0.133us

� Example - Restart from checkpoint file at 0.133 µs :

.OPTIONS RESTART FILE=checkpt0.000000133

� Example - Restart from 0.133 µs and continue checkpointing at 0.1 µs intervals:

.OPTIONS RESTART FILE=checkpt0.000000133 JOB=checkpt_again
+ INITIAL_INTERVAL=0.1us

7.3 DC Analysis
The DC sweep analysis capability in Xyce carries out a sweep, in DC mode, on a circuit.
DC sweep is supported for a source (current or voltage), through a range of specified
values. As the sweep proceeds, the bias point is computed for each value in the specified
range of the sweep.

If the variable to be swept is a voltage or current source, a DC source must be used. The
DC value is set in the netlist (see the Xyce Reference Guide [3]). In simulating the DC
response of an analog circuit, Xyce eliminates any time dependence from the circuit. This
is accomplished by treating all capacitor elements as open circuits, all inductor elements
as short circuits and using only the DC values of both voltage and current sources.
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.DC Statement

One specifies a .DC analysis with a .DC line in the netlist. Some examples of typical .DC
lines are:

Example:
.DC M1:L 7u 5u -1u
.DC OCT V0 0.125 64 2
.DC DEC R1 100 10000 3
.DC TEMP LIST 10.0 15.0 18.0 27.0 33.0

The examples include all four types of sweep - linear, octave, decade, and list. For a
complete description of each of these, see the Xyce Reference Guide [3].

Setting Up and Running a DC Sweep

Following the example given in Section 3.2, the diode clipper circuit netlist is shown in
Figure 7.1 with a DC sweep analysis specified. Here, the voltage source Vin is swept from
-10 to 15 in 1 volt increments, resulting in 26 DC operating point calculations. Note also
that the default setting for Vin is ignored during these calculations. All other source values
use the specified values (VCC = 5V in this case).

Running Xyce on this netlist produces an output results file named clipper.cir.prn.
Obtaining this file requires that the .PRINT DC line be specified.Plotting this data produces
the graph shown in Figure 7.2.

OP Analysis

Xyce also supports .OP analysis statements. In Xyce, .OP should be considered as a
shorthand for a single step DC sweep, in which all the default operating point values are
used. One can also consider .OP analysis to be the operating point calculation which would
occur as the initial step to a transient calculation, without the subsequent time steps.

This capability was mainly added so that the code would be able to handle legacy netlists
which used this type of analysis statement. In most versions of SPICE, using .OP will result
in extra output which is not available from a DC sweep. That additional output capability
has not yet been implemented in Xyce.
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Diode Clipper Circuit
** Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940 D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
** GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
* .END

Figure 7.1. Diode clipper circuit netlist for DC sweep analysis.
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Figure 7.2. DC sweep voltages at Vin, node 2 and Vout.
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7.4 STEP Parametric Analysis
The .STEP command performs a parametric sweep for all the analyses of the circuit. When
this command is invoked, all of the typical analysis, such as .DC or .TRAN analysis are
performed at each parameter step.

This capability is very similar to the STEP capability in PSPICE [4], but not identical. In
Xyce, .STEP can be used to sweep over any device instance or device model parameter,
as well as the circuit temperature. Currently, there is not a capability for sweeping global
parameters, as specified by a .PARAM statement (Section 4.3).

.STEP Statement

One specifies a .STEP analysis by simply adding a .STEP line to a netlist. Note that unlike
.DC, .STEP by itself is not an adequate analysis specification, as it merely specifies an
outer loop around the normal analysis. There needs still needs to be a standard analysis
line, either specifying .TRAN or .DC analysis.

Some examples of typical .STEP lines are:

Example:
.STEP M1:L 7u 5u -1u
.STEP OCT V0 0.125 64 2
.STEP DEC R1 100 10000 3
.STEP TEMP LIST 10.0 15.0 18.0 27.0 33.0

.STEP has a format similar to that of the .DC specification. In the first example, M1:L is
the name of the parameter, 7u is the initial value of the parameter, 5u is the final value of
the parameter, and -1u is the step size. Like .DC, .STEP in Xyce can also handle sweeps
by decade, octave or specified lists of values. For a complete explanation of each type of
sweep, consult the Xyce Reference Guide [3].

Sweeping over a Device Instance Parameter

The first example uses M1:L as the parameter, but it could have used any model or instance
parameter that existed in the circuit. Internally, Xyce handles the parameters for all device
models and device instances in the same way. You can uniquely identify any parameter
by specifying the device instance name, followed by a colon (:), followed by the specific
parameter name. For example, all the MOSFET models have an instance parameter for
the channel length, L. If you have a MOSFET instance specified in a netlist, named M1,
then the full name for M1’s channel length parameter is M1:L.

A simple application of .STEP to a device instance is given in figure 7.3. This is the same
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diode clipper circuit as was used in the transient analysis chapter, except that a single line
(in red font) has been added. The .STEP line will cause Xyce to sweep the resistance of
the resistor, R4, from 3.0 KOhms to 15.0 KOhms, in increments of 2.0 KOhms. This means
that a total of seven transient simulations will be performed, each one with a different value
for R4.

As the circuit is executed multiple times, the file resulting output is a little more sophisti-
cated. The .PRINT statement is still used in much the same way as before. However, .prn
output file contains the concatenated output of each .STEP increment. For details of how
.STEP changes output files, see the end of this section.

Sweeping over a Device Model Parameter

Sweeping a model parameter can be done in an identical manner to an instance parameter.
Figure 7.4 contains the same circuit as in figure 7.3, but with a new .STEP line added. The
new .STEP line refers to a model parameter, D1N3940:IS. Note that separate .STEP lines is
the correct way to specify multiple parameters for .STEP analysis. Each parameter needs
its own separate line. In this respect, the .STEP line syntax differs from the .DC line syntax.

Sweeping over Temperature

It is also possible to sweep over temperature. To do so, simply specify temp as the param-
eter name. It will work in the same manner as .STEP when applied to model and instance
parameters.

Special cases: Sweeping Independent Sources, Resistors,
Capacitors

For some devices, there is generally only one parameter that one would want to actually
sweep. For example, a linear resistor’s only parameter of interest is the resistance, R. Sim-
ilarly, for a DC voltage or current source, one is usually only interested in the magnitude of
the source. Finally, linear capacitors generally only have the capacitance, C, as a parame-
ter of interest. To make things easier for the user, these three types of devices have default
parameters. Examples of usage are given below.

Example:
.STEP R4 3.0K 15.0K 2.0K
.STEP VCC 4.0 6.0 1.0
.STEP ICC 4.0 6.0 1.0
.STEP C1 0.45u 0.50u 0.1u

Independent sources require some extra explanation. There are a number of different
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Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statement
.STEP R4:R 3.0K 15.0K 2.0K
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 7.3. Diode clipper circuit netlist for step transient analysis.

89



XyceTM Users’ Guide Analysis Types

Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statements
.STEP R4:R 3.0K 15.0K 2.0K
.STEP D1N3940:IS 2.0e-10 6.0e-10 2.0e-10
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 7.4. Diode clipper circuit netlist for 2-step transient analy-
sis.
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types of independent source, and only some of them have default parameters. Sources
which are subject to .DC sweeps (swept sources) do not have a default parameter, as this
could easily lead to infinite loops. The various independent source defaults are defined in
the table.

Source Type Default

Sinusoidal source V0 (DC value, Offset)

Exponential source V1 (DC value, Initial value)

Pulsed source V2 (Pulsed value)

Constant, or DC source V0 (Constant value)

Piecewise Linear source No default

SFFM source No default

Swept source (specified on a .DC line) No default

Table 7.2: Default parameters for independent sources.

Output files

A .STEP simulation can be thought of as several distinct executions of the same circuit
netlist. The output data, as specified by a .PRINT line, however, goes to a single (*prn)
file. For convenience, a second auxilliary file is also created, with the *.res suffix.

The example file given in figure 7.3 has a filename of clip.cir. When run, it will produce
files clip.cir.res and clip.cir.prn. clip.cir.res contains one line for each step,
showing what parameter value was used on that step. clip.cir.prn is the familiar output
format, but the INDEX field recycles to zero each time a new step begins. Since the default
behavior distinguishes each step’s output only by recycling the INDEX field to zero, it can
be beneficial to add the sweep parameters to the .PRINT line. For the default file format
(format=std), these sweep parameters will not be included automatically, so for plotting
purposes it is usually best to specify them by hand.

If using the default .prn file format (format=std), the output file resulting from a .STEP
simulation will just be a simple concatenation. If using format=probe, the data for each
execution of the circuit will be in distinct sections of the file, and it should be easy to plot
the results, using PROBE. If using format=tecplot, the results of each .STEP simulation
will be in a distinct tecplot zone.

91



XyceTM Users’ Guide

This page is left intentionally blank

92



8. Using Homotopy
Algorithms to Obtain
Operating Points

Chapter Overview
This chapter includes the following sections:

� Section 8.1, Homotopy Algorithms Overview

� Section 8.2, Examples
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8.1 Homotopy Algorithms Overview
The most difficult type of numerical nonlinear circuit problem to solve is a DC operating
point. DC operating point analysis cannot rely on a good initial guess whereas a transient
analysis can use the results of the previous time step. Additionally, operating points often
have multiple solutions.

Homotopy methods can often provide solutions to difficult nonlinear problems when more
conventional numerical methods fail. In recent years, these techniques have been applied
to circuit analysis. As of the Xyce Version 2.1 release, some of these algorithms have been
added to Xyce. This chapter gives an introduction to the usage of homotopy algorithms
(also called continuation algorithms) in Xyce. For a more complete description of solver
options, see the Xyce Reference Guide [3].

HOMOTOPY Algorithms Available in Xyce

There are two general types of homotopy which are available in Xyce. The first (which is
set with .options nonlin continuation=1), is a simple natural parameter homotopy, in
which the homotopy parameter is an already-defined input parameter to a device model
or instance. This algorithm can be useful, but often is not. The most obvious natural
parameters to use (the magnitudes of independent sources) tend to lead to turning points
in the continuation.

The second is an algorithm which is designed especially for MOSFET circuits [9]. This
algorithm involves two internal MOSFET model parameters, one for the MOSFET gain,
and the other for the nonlinearity of the current-voltage relationship. This algorithm is
invoked with .options nonlin continuation=2. This algorithm has proved to be very
effective in large MOSFET circuits.

8.2 Examples

MOSFET Homotopy

Figure 8.1 contains a MOSFET homotopy example netlist. Note that this is a usage exam-
ple - the circuit itself does not require homotopy to run. Circuits which are complex enough
to require homotopy would not fit on a single page. The lines pertinent to the homotopy
algorithm are highlighted in red.

Explanation of Parameters, Best Practice

Note that this example shows one set of options, but there are a number of other combi-
nations of options that will work.
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THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options
.options device voltlim=0

.options nonlin continuation=2

.options loca stepper=0 predictor=0 stepcontrol=1
+ initialvalue=0.0 minvalue=-1.0 maxvalue=1.0
+ initialstepsize=0.2 minstepsize=1.0e-4
+ maxstepsize=5.0 aggressiveness=1.0
+ maxsteps=100 maxnliters=200

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8.1. Example MOSFET homotopy netlist.
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There are a number of ”best practice” rules, which are illustrated by the example in fig-
ure 8.1. They are:

� voltlim=0. This is absolutely required - the homotopy algorithms will usually break
if used in conjunction with voltage limiting.

� continuation=2. This specifies that we are using the special MOSFET homotopy.
This is a 2-pass homotopy, in which first a parameter having to do with the gain is
swept from 0 to 1, and then a parameter relating to the nonlinearity of the transfer
curve is swept from 0 to 1.

� initialvalue=0.0. This is required.

� maxvalue=1.0. This is required.

� stepcontrol=1. This specifies that the homotopy steps are adaptive, rather than
constant. This is recommended.

� maxsteps=100. This sets the maximum number of continuation steps for each param-
eter. For the special MOSFET continuation (which has 2 parameters), this means a
maximum of 200 steps.

� maxnliters=200. This is the maximum number of nonlinear iterations, and has
precedence over the similar number which can be set on the .options nonlin line.

� aggressiveness=1.0. This refers to the step size control algorithm, and the value
of this parameter can be anything from 0.0 to 1.0. 1.0 is the most aggressive. In
practice, try starting with this set to 1.0. If the solver fails, then reset to a smaller
number.

Natural Parameter Homotopy

Figure 8.2 contains a natural parameter homotopy netlist. It is the same circuit as was
used in figure 8.1, except that some of the parameters are different. As before, the lines
pertinent to the homotopy algorithm are highlighted in red.

Explanation of Parameters, Best Practice

There are a few differences between the netlist in figure 8.1 and figure 8.2. They are:

� continuation=1. Sets the algorithm to use natural parameter homotopy.

� conparam=VDDdev. If using natural parameter homotopy, this is required. It sets which
input parameter to perform continuation on. The parameter name is subject to the
same rules as parameter used by the .STEP capability. (See section 7.4). In this case
the parameter is the magnitude of the DC voltage source, VDDdev. For this type of
voltage source, it was possible to use the default device parameter (see section 7.4)
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THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3

* HOMOTOPY Options
.options device voltlim=0

.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=1
+ conparam=VDDdev
+ initialvalue=0.0 minvalue=-1.0 maxvalue=5.0
+ initialstepsize=0.2 minstepsize=1.0e-4
+ maxstepsize=5.0 aggressiveness=1.0
+ maxsteps=100 maxnliters=200

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8.2. Example natural parameter homotopy netlist.
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Using the magnitudes of independent voltage and current sources is a fairly obvious ap-
proach. Unfortunately, it doesn’t seem to work very well in practice.
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9. Results Output and
Evaluation Options

Chapter Overview
This chapter illustrates how to output simulation results to data or output files.

� Section 9.1, Control of Results Output

� Section 9.2, Additional Output Options

� Section 9.3, Evaluating Solution Results
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9.1 Control of Results Output
Xyce supports only one solution output command, .PRINT. .PRINT is quite flexible, and
supports several output formats.

.PRINT Command

The .PRINT command sends the analysis results to an output file. Xyce supports several
options on the .PRINT line of netlists that control the format of the output. The syntax for
the command is as follows:

� .PRINT <analysis type> [options] <output variable(s)>

Example:
.PRINT TRAN FILE=Output.prn V(3) I(R3) ID(M5) V(4)
.PRINT DC format=tecplot FILE=Output.dat V(2) {I(C3)+abs(V(4))*5.0}

Table 9.1 gives the various options currently available to the .PRINT command. Note that
as of Xyce Release 3.0, it is possible to include device current or lead current specifications
on the .PRINT line. Expressions can be output that include any valid .PRINT quantities. For
further information, see the Xyce Reference Guide [3].

9.2 Additional Output Options

.OPTIONS OUTPUT Command

The main purpose of the .OPTIONS OUTPUT command is to provide control of the frequency
at which data is written to files specified by .PRINT TRAN commands. This can be espe-
cially useful in controlling the size of the results file for simulations which required a large
number of time steps. An additional benefit is that reducing the output frequency from the
default, which outputs results at every time-step, can improve performance. The format for
controlling the output frequency is:

� .OPTIONS OUTPUT INITIAL INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]

where INITIAL_INTERVAL=<interval> specifies the starting interval time for output and
<tx ix> specifies later simulation times (tx) where the output interval will change to (ix).
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Option. . . Action. . .

FORMAT=<STD|NOINDEX|PROBE>

Controls the output format. The STD
format outputs data in standard columns.
The NOINDEX format is the same as the
standard format except that the index
column is omitted. The PROBE format
specifies that the output should be
formatted to be compatible with the
PSpice Probe plotting utility. The default is
STD.

FILE=<output filename>

Allows the user to specify the output
filename. The default is the netlist
filename with the characters “.prn”
appended (e.g., foo.cir.prn where
foo.cir was the input netlist filename.

WIDTH=<print field width>
Allows the user to control the column
width for the output data.

PRECISION=<floating point precision>
Controls the number of significant digits
past the decimal point.

FILTER=<filter floor value>
Specifies the absolute value below which
output variables will be printed as 0.0.

DELIMITER=<TAB|COMMA>
Specifies an alternate delimiter between
columns of output in the STD output
format.

Table 9.1. .PRINT command options.

101



XyceTM Users’ Guide Results Output and Evaluation Options

The following example shows the output being requested (via the netlist .OPTIONS OUTPUT
command) every .1µs for the first 10µs, every 1µs for the next 10µs, and every 5µs for the
remainder of the simulation:

Example: .OPTIONS OUTPUT INITIAL INTERVAL=.1us 10us 1us 20us 5us

Note: Xyce will output data at the next time that is greater-than or equal to the current
interval time. This means that output might not correspond exactly to the time intervals
due to the adaptive time stepping algorithm.

9.3 Evaluating Solution Results
This section describes how to view graphical waveform analysis of the simulation results
generated by Xyce. You can use the solution output features of Xyce in conjunction with
graphing tools (e.g., TecPlot, gnuplot, MS Excel, etc.) to analyze graphically the waveform
data created by a Xyce circuit simulation (see Figure 9.1 below for an example plot using
TecPlot, http://www.amtec.com). In addition, by using the FORMAT=PROBE option to the
.PRINT command, Xyce is able to output .csd files which can be read by the PSpice
Probe utility to view the results. See the PSpice Users Guide [4] for instructions on using
the Probe tool, and the Xyce Reference Guide [3] for details on the options to the .PRINT
command.

Xyce produces two types of output: the simulation output file and the waveform data file.
The calculations and results reported in the simulation output file can be thought of as an
audit trail of the simulation. However, graphical analysis of data in the waveform data file
is the most useful and accommodating way to evaluate simulation results.
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Figure 9.1. TecPlot plot of diode clipper circuit transient response
from Xyce .prn file.
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10. Guidance for
Running Xyce in Parallel

Chapter Overview
This chapter gives guidance on how to run a parallel version of Xyce. It includes the
following sections:

� Section 10.1, Introduction

� Section 10.2, Mechanics

� Section 10.3, Problem Size

� Section 10.4, Linear Solver Options

� Section 10.5, Partitioning Options
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10.1 Introduction
Xyce has been designed, from the ground up, to support a message-passing parallel im-
plementation. As such, Xyce is unique among circuit simulation tools, and many of the
issues pertinent to running in parallel are still research issues. However, Xyce is now ma-
ture enough that some general principles have emerged, for effectively running problems
in a parallel environment.

10.2 Mechanics
Parallel simulations must be run from the command line. Details of how to do this are given
in section 2.2.

10.3 Problem Size
Due to the overhead of interprocessor communication, running Xyce in parallel is only
useful for large circuit problems. Also, for any problem size, there is an optimal number of
processors. As one increases the processor count, the amount of communication required
increases and the work per processor decreases. This increase in communication will slow
a simulation down, while the reduction in work per processor will have the reverse effect.
If the number of processors is too large, the benefit of distributing the problem will be
outweighed by the high cost of communication overhead. Such a limit exists for every size
of problem, and increasing the processor count beyond this point is counterproductive.
This issue is most pronounced for platforms with a high communication cost, such as
Beowulf clusters.

Smallest Possible Problem Size

Circuits are comprised of a discrete set of components (voltage nodes, devices, etc.). To
run in parallel, it is preferable that Xyce be able to put at least one discrete part of the
problem on each processor. In practice, this means that the number of processors should
be less than the number of nodes in the circuit. Xyce is capable of simulating smaller
problems, but it is not recommended, due to solver instabilities.

Ideal Problem Size

To take full advantage of Xyce’s parallel capability, the problem should be relatively large.
A good metric for estimating how many processors one should use is the number of de-
vices per processor. The ideal number of devices per processor is machine and problem
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dependent. For machines such as SGI Challenger platforms, with relatively fast commu-
nication speeds in comparison to processor performance, reasonable speedups can be
seen for 100’s of devices per processor. For Beowulf clusters with relatively slow commu-
nication speeds in comparison to processor performance, 1000’s of devices per processor
are required to achieve reasonable speedups in parallel. These numbers are problem-
dependent, as the effectiveness of the load balance and partitioning can vary substantially
for different circuits.

10.4 Linear Solver Options
There are several different linear solvers available in Xyce version 3.0. They are:

� The AztecOO iterative solver library.

� SuperLU.

� Kundert Sparse (KSparse).

� KLU

For Xyce version 3.0, AztecOO is the only fully parallel solver available. However, both
SuperLU and KLU are available with the parallel version of Xyce. With the later two solvers,
the problem will be ”assembled” in parallel, but the linear system will be solved in serial on
processor 0. This can be quite effective for smaller parallel problems of a few thousand
devices or less. KSparse is only available in serial Xyce.

10.5 Partitioning Options
Xyce currently has graph partitioning available. This partitioning subdivides the circuit
problem into sections that are then distributed to the processors. A good partition can
have a dramatic effect on the parallel performance of circuit simulation. There are two key
components to a good partition:

� Effective load balance.

� Minimizing communication overhead.

An effective load balance ensures that the computational load of the calculation is equally
distributed among the available processors. Minimizing communication overhead seeks
to distribute the problem in a way that reduces the impact of underlying message passing
during the simulation run. For runs with a small number of devices per processor the
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communication overhead becomes the critical issue, while for runs with larger numbers of
devices per processor the load balancing becomes more important. Xyce has integrated
within it the ZOLTAN library of parallel partitioning heuristics.

Zoltan Partitioning of the Linear System

Zoltan is accessible through the ’.OPTIONS LINSOL’ control line in the netlist. By adding
an options ’TR_LOADBALANCE=1’ to the linear options, the linear system is statically load
balanced based on the graph of the Jacobian matrix. The local system is also reordered
based on nested dissection which should improve conditioning and minimize fill. These
techniques can be very effective for improving the efficiency of the iterative linear solvers.
See the Zoltan User Guide [10] for details. This option is now used by default for parallel
problems.

Singleton Filtering of the Linear System

Singleton filtering refers to the reduction of the linear system through removal of all rows
and columns with single non-zero entries. The values associated with these removed
entries can be resolved as pre/post solve linear operations. A by-product of this reduction
is a more tractable, sparser linear system for both the load balancing and linear solver
algorithms. This functionality is turned on by adding the ’TR_SINGLETON_FILTER=1’ option
to the ’.OPTIONS LINSOL’ control line in the netlist.

An important caveat is that the performance and convergence of the linear solver for par-
allel problems can be substantially less robust for some circuits. This is a known issue
with parallel iterative solution of linear problems. If Xyce is not performing as expected for
these problems, please consult the developer team.
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11. TCAD (PDE Device)
Simulation with Xyce

Chapter Overview
This chapter gives guidance on how to use the mesh-based device simulation capability of
Xyce. It includes the following sections:

� Section 11.1, Introduction

� Section 11.2, One Dimensional Example

� Section 11.3, Two Dimensional Example

� Section 11.4, Doping Profile

� Section 11.5, Electrodes

� Section 11.6, Meshing

� Section 11.7, Mobility Models

� Section 11.8, Bulk Materials

� Section 11.9, Solver Options

� Section 11.10, Output and Visualization
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11.1 Introduction
This chapter describes how to use the mesh-based device simulation functionality of Xyce.
This capability is based on the solution a coupled set of partial differential equations
(PDEs), discretized on a mesh such as the one in Figure 11.1. Such devices are often
referred to as TCAD devices, where TCAD stands for Technology Computer Aided Design.
While the rest of Xyce is intended to be similar to analog circuit simulators such as SPICE,
the TCAD device capability is intended to be similar to well-known device simulators such
as PISCES [11] and DaVinci [12].

Two different TCAD devices are available Xyce: a one-dimensional device and a two-
dimensional device. These two devices have been implemented in a manner which allows
them to be invoked in the same way as a conventional lumped parameter circuit device.
Generally, this capability is intended for very detailed simulation of semiconductor devices,
such as diodes, bipolar transistors, and MOSFETs. One possible application of this ca-
pability is the evaluation and/or analysis of conventional SPICE-style lumped parameter
models.

NOTE: As of Xyce Release 2.1, the TCAD devices should still be considered to be a beta-
level capability. The primary focus of Xyce has been traditional analog circuit simulation,
so the TCAD devices have not been subject to the same level of testing as the traditional,
SPICE-style devices. The TCAD (PDE) device simulator in Xyce should be regarded as a
prototype for Charon, a high performance 3D device simulator that is under development
at Sandia.

NOTE: The use of square brackets [] in the doping and electrode specifications is no longer
correct as of Xyce Release 2.1. The correct delimiter to use for these parameters is now
the curly bracket {}.

Equations

The equations of device simulation are described by many references including Kramer [13]
and Selberherr [14]. The most common formulation, and the one that is used in Xyce, is
the drift-diffusion (DD) formulation. This formulation consists of three coupled PDE’s: a
single Poisson equation for electrostatic potential and two continuity equations; one each
for electrons and holes.

Poisson equation

The electrostatic potential φ satisfies Poisson’s equation:

−∇ · (ε∇φ(x)) = ρ(x) (11.1)

where ρ is the charge density and ε is the permittivity of the material. For semiconduc-
tor devices, the charge density is determined by the local carrier densities and the local
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Figure 11.1. MOSFET Mesh Example.

doping,
ρ(x) = q(p(x)− n(x) + C(x)) (11.2)

Here p(x) is the spatially-dependent concentration of holes, n(x) the concentration of elec-
trons, and q the magnitude of the charge on an electron. C(x) is the total doping con-
centration, which can also be represented as C(x) = N+

D (x) − N−
A (x), where N+

D the
concentration of positively ionized donors, N−

A the concentration of negatively ionized ac-
ceptors.

Species continuity equations

The continuity equations relate the convective derivative of the species concentrations to
the creation and destruction of particles (“recombination/generation”).

∂n(x)
∂t

+∇ · Γn = −R(x) (11.3)

∂p(x)
∂t

+∇ · Γp = −R(x) (11.4)

Here n is the electron concentration and p is the hole concentration. R is the recombination
rate for both species. Γn and Γp are particle fluxes for electrons and holes, respectively.
The sign of R is chosen because R is usually expressed as a recombination rate, and
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is positive if particles are annihilating. The right hand sides are equal since creation and
destruction of carriers occurs in pairs.

One way in which the drift-diffusion model differs from other common formulations is the
manner in which the quantities Γn and Γp are determined. The expressions used are:

Γn = n(x)µnE(x) + Dn∇n(x) (11.5)
Γp = p(x)µpE(x) + Dp∇p(x) (11.6)

Here µn, µp are mobilities for electrons and holes, and Dn, Dp are diffusion constants.
E(x) is the electric field, which is given by the gradient of the potential, or −∂φ/∂x.

Discretization

Xyce uses a box-integration discretization, with the Scharfetter-Gummel method for model-
ing the flux of charged species. This method has been described in detail elsewhere [13] [14] [15],
so it will not be described here.
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11.2 One Dimensional Example
The one-dimensional device was the first PDE-based device to be implemented in Xyce.
The single dimension limits its usefulness, but its simplicity makes it a good device to
use for a preliminary example. One dimensional devices are almost always two-terminal
diodes, and this fact allows for assumptions which simplify the specification and shorten
the parameter list of the device.

An example netlist, for a simulation of a one-dimensional diode, is shown in Figure 11.2.
The corresponding schematic is in Figure 11.3. The circuit is a regulator circuit, and is
based on the principle that connecting one or more diodes in series with a resistor and
a power supply will produce a relatively constant voltage. The input voltage (node 2) is a
sinewave, with a frequency of 50 Hz and an amplitude of 1 V. The expected output (node
3) should be a (mostly) flat signal.

PDE Diode Regulator Circuit
VP 1 0 PULSE(0 5 0.0 2.0e-2 0.0 1.0e+20 1.2e+20)
VF 2 1 SIN(0 1 50 2.0e-2)
VT1 4 0 0V
R1 2 3 1k

* TCAD/PDE Device
Z1 3 4 DIODE na=1.0e19 nd=1.0e19 graded=0
+ l=5.0e-4 nx=101

.MODEL DIODE ZOD

.TRAN 1.0e-3 12.0e-2

.print TRAN format=tecplot
+ v(1) v(2) v(3) v(4) I(VF) I(VT1)

.options NONLIN maxstep=100 maxsearchstep=3
+ searchmethod=2 nox=0

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
+ resettrannls=0

.END

Figure 11.2. One dimensional diode netlist. This circuit is a
voltage regulator. The input signal should be a sinewave, while
the output signal should be nearly flat. For the result of this netlist,
see Figure 11.4
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Figure 11.3. Voltage regulator schematic. The diode, Z1, is the
PDE device in this example.

Netlist Explanation

In Figure 11.2, the PDE device instance line is in red, while the PDE device model line
is in blue. Currently, there are almost no model parameters for PDE devices. The model
line serves only to set the level. The default level is 1, for a one-dimensional device. Two
dimensional devices are invoked by setting level=2. Note that in this example, the level is
not explicitly set, and so the default (1) is used.

The instance line is where most of the specific parameters are set for a TCAD device. In
this example, the line appears as:

Z1 3 4 DIODE na=1.0e19 nd=1.0e19 graded=0 l=5.0e-4 nx=101

na and nd are doping parameters, and represent the majority carrier doping levels on the N-
side and the P-side of the junction, respectively. graded=0 is also a doping parameter, and
specifies that the junction is not a graded junction, but is an abrupt step-function junction
instead. l=5.0e-4 specifies the length of the device, in cm. nx=101 specifies that there are
101 mesh points, including the two endpoints. For the one-dimensional device, the mesh
is always uniform, so the size of each mesh cell, ∆x will be:

∆x =
l

nx− 1
=

5.0e-4 cm
100

= 5.0e-6 cm (11.7)

The mesh points i = 0− 101 will have the following locations, xi:

xi = i∆x

xo = 0.0 cm
x1 = 5.0e-6 cm

.
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.

.

x101 = 5.0e-4 cm

Boundary Conditions and Doping Profile

Note that nothing has been specified in the example netlist about electrodes, or boundary
conditions, and that the doping specification is minimal. This is because the example relies
a lot on default parameters. A one dimensional device can only have exactly 2 electrodes
connected to the circuit. These two electrodes are at opposite ends of the domain, one at
the first mesh point (x=0.0 cm, i=0) and the other at the opposite end of the domain, at the
last mesh point (x=5.0e-4 cm, i=101).

The electrode associated with the first mesh point (x=0.0 cm) is connected to the second
circuit node on the instance line, while the electrode associated with the last mesh point
(x=l) is connected to the first circuit node on the instance line. For the doping used in
this example, the junction is in the exact center of the device (x=l/2), and the n-side is
the region defined by x<l/2, and the p-side is the region defined by x>l/2. This default
doping, along with the electrode-circuit connectivity, result in the one-dimensional device
to behave like a traditional SPICE-style diode. For a complete discussion of how to specify
a doping profile see section 11.4. For a complete discussion of how to specify electrodes
in detail (including boundary conditions), see section 11.5.

Results

The transient result of this circuit is shown in Figure 11.4. The input signal (node 2) is
represented by the blue line, and the output signal (node 3) is represented by the red line.
The voltage drop across the diode is nearly the same for a wide range of currents, and is
approximately 0.67 V. The voltage drop across the series resistor, R1, is much more sensi-
tive to the current magnitude, and so most of the voltage variation of the input sinewave is
accounted for by R1.
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Figure 11.4. Transient result for the voltage regulator circuit in
Figure 11.2. The input voltage is represented by the blue line,
while the output voltage is given by the red line.
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11.3 Two Dimensional Example
An example netlist, for a simulation of a two-dimensional bipolar transistor, is shown in
Figure 11.5. As before, the PDE device instance line is in red, while the PDE device model
line is in blue. In this case, note that the level has been specified on the model line, and it
has been set to 2. This is required for the two-dimensional device. This particular example
is a DC sweep of a bipolar transistor device. A schematic, illustrating this circuit is shown
in Figure 11.6.

Netlist Explanation

The two-dimensional device can have 2-4 electrodes. (this limitation will be relaxed in
future versions of Xyce) In this example there are three; node 5, node 3 and node 7.
These correspond to the three names on the ”node” line, which appears as:

+ node = {name = collector, base, emitter}

This line specifies that node 5 is connected to an electrode named ”collector”, node 3
is connected to an electrode named ”base”, and node 7 is connected to an electrode
named ”emitter”. Although this example only contains the electrode names, the ”node”
specification can contains a lot of information. For a full explanation of all the electrode
parameters, see section 11.5.

The next line contains parameters concerned with plotting the results, and appears as
follows:

+ tecplotlevel=2 txtdatalevel=1

Note that these are not related to the output specified by .PRINT, which outputs circuit data.
The tecplotlevel command enables files to be output which are readable by tecplot.
Tecplot can then be used to create contour plots of quantities such as the electron density,
electrostatic potential and the doping profile. Figures 11.7 and 11.8 contain examples of
tecplot-generated contour plots, which were generated from the results of this example.

The txtdatalevel command enables a text file with volume averaged information to be
output to a file. Currently, both of these output files will be updated at each time step or DC
sweep step.

The next line, mobmodel=arora, specifies which mobility model to use. For more detail on
available mobility models, see section 11.7.

The last two lines, specify the mesh of the device, and are given by:

+ l=2.0e-3 w=1.0e-3
+ nx=30 ny=15
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Two Dimensional Example
VPOS 1 0 DC 5V
VBB 6 0 DC -2V
RE 1 2 2K
RB 3 4 190K

Z1BJT 5 3 7 PDEBJT meshfile=internal.msh
+ node = {name = collector, base, emitter}
+ tecplotlevel=2 txtdatalevel=1
+ mobmodel=arora
+ l=2.0e-3 w=1.0e-3
+ nx=30 ny=15

* Zero volt sources acting as an ammeter to measure the
* base, collector, and emmitter currents, respectively
VMON1 4 6 0
VMON2 5 0 0
VMON3 2 7 0

.MODEL PDEBJT ZOD level=2

.DC VPOS 0.0 12.0 0.5 VBB -2.0 -2.0 1.0

.options LINSOL type=superlu

.options NONLIN maxstep=70 maxsearchstep=1
+ searchmethod=2 in_forcing=0 nlstrategy=0

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
+ firstdcopstep=0 lastdcopstep=1

.PRINT DC V(1) I(VMON1) I(VMON2) I(VMON3)

.END

Figure 11.5. Two-dimensional BJT netlist. Some results of this
netlist can be found in Figures 11.7 and 11.8.
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This numbers are used in nearly the same way as the l and nx parameters were used in
the one-dimensional case. The mesh is Cartesian, and the spacing is uniform.

Doping Profile

As in the one-dimensional example, the two-dimensional example in figure 11.5 does not
specify anything about the doping profile, and thus relies upon defaults. In this case there
are three specified electrodes, which by default results in the doping profile of the bipolar
junction transistor (BJT). For a complete description of how to specify a doping profile in
detail, see section 11.4. This section also describes the various default impurity profiles.

Boundary Conditions and Electrode Configuration

As in the one-dimensional example, the two-dimensional example in figure 11.5 does not
specify anything about the electrode configuration or the boundary conditions, and relies
on default settings. To be consistent with the default 3-terminal doping, the device has
terminals that correspond to that of a BJT. All three electrodes (collector, base, emitter) are
along the top of the device.

By default all electrodes are considered to be neutral contacts. The boundary conditions
applied to the electron density, hole density and electrostatic potential are all Dirichlet
conditions.

For a complete discussion of how to specify electrodes in detail (including boundary con-
ditions), see section 11.5.

Results

Results for the two-dimensional example can be found in Figures 11.7, 11.8 and 11.9. The
first two figures are contour plots of the electrostatic potential. The first one corresponds
to the first DC sweep step, where VPOS is set to 0.0 Volts. The second one corresponds
to the final DC sweep step, in which VPOS has a value of 12.0 volts. The voltage source
VPOS applies a voltage to the emitter load resistor, RE, so some of the 12.0V is dropped
across RE, an the rest is applied to the BJT.

The third figure is an I-V curve of the dependence of the three terminal currents on applied
emitter voltage. For the entire sweep, a negative voltage of 2.0 V has been applied to the
base load resistor, and as this transistor is a PNP transistor, this results in the transistor
being in an “on” state. The emitter-collector current varies nearly linearly with the applied
emitter voltage. Also, the three currents sum to nearly zero, which one would expect
because of current conservation.

Note that the mesh is visible in Figure 11.7, and was generated using the internal “uniform
mesh” option. Generally using this sort of mesh will work numerically, in that Xyce will
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converge to an answer. However, this mesh will probably not produce a very accurate
result, as it does not resolve the depletion regions very well. In order to obtain better
accuracy, either a finer uniform mesh would need to be used, or a nonuniform mesh,
refined in around the depletion regions should be used. As described in section 11.6,
refined, nonuniform meshes must be read in from an external mesh generator, such as the
SGFramework [13].
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Figure 11.6. Two-Dimensional BJT Circuit Schematic. This
schematic is for the circuit described by the netlist in Figure 11.5.
The mesh in the large circle is the mesh used in the example. The
other mesh, which contains some mesh refinement, is included in
the figure as an example of what is possible with an external mesh
generator.
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Figure 11.7. Initial Two-Dimensional BJT Result. Contour plot of
the electrostatic potential at the first DC sweep step of the netlist in
Figure 11.5. Note the mesh, which was generated using the inter-
nal “uniform mesh” option. This plot was generated using Tecplot.

Figure 11.8. Final Two-Dimensional BJT Result. Contour plot of
the electrostatic potential at the last DC sweep step of the netlist
in Figure 11.5. This plot was generated using Tecplot.
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Figure 11.9. I-V Two-Dimensional BJT Result, for the netlist in
Figure 11.5. The x-axis is in Volts. The three plotted currents are
through the three BJT electrodes, and as expected they add (if cor-
rected for sign) to zero. I(VMON1) is the base current, I(VMON2)
the collector current, and I(VMON3) the emitter current. V(1) is
the voltage applied to the emitter load resistor, RE. This plot was
generated using Tecplot.
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11.4 Doping Profile
In the two examples, no doping parameters were specified, and Xyce used the defaults.
Default profiles are uniquely specified by the number of electrodes. In practice, especially
for two-dimensional simulations, the user will generally need to specify the doping profile
manually.

NOTE: If an external mesh (from the SGFramework) is used, the doping profile will be read
in from the mesh file, and it is not necessary (or appropriate) to specify any doping in the
netlist.

Manually Specifying the Doping

A circuit netlist, which includes a one-dimensional device with a detailed, manual speci-
fication of the doping profile, is given in figure 11.10. A similar, two-dimensional, version
of this problem is given in figure 11.12. For the purposes of this discussion, the one-
dimensional example will be referred to, but information conveyed is equally applicable to
the two-dimensional case.

In both examples, the parameters associated with doping are in red font. The doping is
specified with one or more regions, which are summed together to get the total profile.
Doping regions are specified in a tabular format, with each column representing a different
region.

In the one-dimensional example, there are three regions, which are illustrated in figure 11.11.
Region 1 is a uniform n-type doping, with a constant magnitude of 4.0e+12 donors per cu-
bic cm. This magnitude is set by the parameter nmax. As the doping in this region is
spatially uniform, the only meaningful parameters are function (which in this case spec-
ifies a spatially uniform distribution), type (ntype or ptype) and nmax. The others (nmin
through flaty) are ignored for a spatially uniform region.

Region 2 is a more complicated region, in that the profile varies with space. This region
is doped with p-type impurities, and has a Gaussian shape. Semiconductor processing
often consists of an implant followed by an anneal, which results in a diffusive profile.
The Gaussian function is a solution to the diffusion problem, when it is assumed that the
impurity exists in a fixed quantity. Thus, the Gaussian shape is an appropriate choice for
the doping regions of a lot of devices.

The peak of the Region 2 doping profile is given by the parameter nmin, and is 1.0e+19
acceptors per cubic cm. This peak has a location in the device which is specified by
xloc=24.5e-4 cm. The parameters nmin and xwidth are fitting parameters.

Region 3 is also based on a Gaussian function, but unlike Region 2, it is flat on one side of
the peak. This is set by the flatx parameter. The ”flat” parameters follow the convention
given by Table 11.1.
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Doping and Electrode specification example
TITLE Xyce PN Junction Simulation
vscope 0 1 0.0
rscope 2 1 50.0
cid 3 0 1.0u
r1 4 3 1515.0
vid 4 0 5.00
Z1DIODE 2 3 PDEDIODE nx=301 l=26.0e-4
* DOPING REGIONS: region 1, region 2, region 3
+ region= {function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4.0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 24.5e-04, 9.0e-04
+ xwidth = 0.0 , 4.5e-04, 8.0e-04
+ flatx = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------
.MODEL PDEDIODE ZOD level=1
.options LINSOL type=superlu
.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.DC vscope 0 0 1
.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)
.END

Figure 11.10. One-dimensional example, with detailed doping.
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Figure 11.11. Doping Profile, Absolute Value. This corresponds
to the doping specified by the netlist in figure 11.10
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flatx or flaty

value
Description 1D Cross

Section

0 Gaussian on both sides of the peak (xloc) location.

+1 Gaussian if x>xloc, flat (constant at the peak value) if

x<xloc.

-1 Gaussian if x<xloc, flat (constant at the peak value) if

x>xloc.
Table 11.1: Description of the flatx, flaty doping parameters

Default Doping Profiles

Xyce has a few default doping profiles which are invoked if the user doesn’t bother to
specify detailed doping information. The default doping profiles are an artifact of early
TCAD device development in Xyce, but are sometimes still useful. In particular, the simple
step-junction diode is often a useful canonical problem. It is convenient to invoke a step
junction doping without having to use the more complex region tabular specification.

Most real devices will have doping profiles that do not exactly match the default profiles.
When attempting to simulate a realistic device, it will be necessary to skip the defaults and
use the region tables described in the previous section.

One Dimensional Case

For the one-dimensional case, it is assumed that the doping profile is that of a simple
junction diode, with the junction location exactly in the middle. The acceptor and donor
concentrations are given by the parameters Na and Nd, respectively.

Note that the usage of Na and Nd, implicitly specifies a step junction doping profile, and is
mutually exclusive with the more complex “doping region” table specification, described in
section 11.4. If a netlist is input to Xyce which includes both a region table and Na (or Nd),
the code will immediately exit with an error.

Two Dimensional Case

Doping level defaults in the two dimensional case are somewhat more complicated than in
the one-dimensional case, because having two-dimensions allows for more configurations,
and an arbitrary number (2-4) of electrodes. In Xyce, it was decided that the default doping
profiles would be determined uniquely by the number of electrodes. The three available
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default dopings are given in Table 11.2. In the case of the BJT and MOSFET dopings,
it is possible to specify either n-type or p-type using the type instance parameter. If the
detailed, manual doping is used, then the type parameter is ignored.

For a two-electrode device, the default doping is that of a simple diode. The acceptor
and donor doping parameters, Na and Nd are used in the same manner as in the one-
dimensional device. As in the one-dimensional device, the junction is assumed to be ex-
actly in the middle of the domain.

For a three-electrode device (like the example), the default doping is that of a bipolar junc-
tion transistor (BJT). By default the transistor is a PNP, but by setting the instance param-
eter type=NPN, an NPN transistor can be specified instead. The two-dimensional example
in section 11.3 relies on this default.

For a four-terminal device, the default doping is that of a metal-oxide-semiconductor (MOS-
FET). Currently, the maximum number of electrodes is four, and no default profiles are
available for more than four electrodes. By default this transistor is assumed to be NMOS,
rather than PMOS.

Number of

Electrodes
Doping Profile

2 Step Function Diode

3 Bipolar Junction Transistor (BJT)

4 Metal-Oxide Semiconductor

Field-Effect Transistor(MOSFET)
Table 11.2: Default Doping profiles for different numbers of elec-
trodes
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11.5 Electrodes
In the two examples, minimal electrode were specified, and Xyce used the defaults. In
practice, especially for two-dimensional simulations, the user will need to specify the elec-
trodes in more detail.

NOTE: If an external mesh (from the SGFramework) is used, some of the electrode infor-
mation (the locations, and lengths) will be specified in the mesh file, so they should not be
specified in the netlist.

Manually Specifying the Electrodes

A detailed electrode specification is specified in blue font in Figure 11.12. As with the
doping parameters, the electrode parameters are specified in a tabular format, in which
each columns of the table specifies the parameters for a different electrode. The most
important parameter (for getting the code to run without immediately exiting with an error)
is the name parameter. It is the only required parameter.

The number of specified electrodes must match the number of connected circuit nodes,
and the order of the electrode columns, from left to right, is in the same order as the circuit
nodes, also from left to right. In the example of Figure 11.12, the first electrode column,
which specifies an electrode named “anode”, is connected to the circuit through circuit
node 2. Respectively, the second column, for the “cathode” electrode, is connected to the
circuit by circuit node 3.

If using an external mesh (see section 11.6), the external mesh file must have this same
number of electrodes as well. Also, if using the external mesh, the electrode names speci-
fied in the electrode table must match (case insensitive) with the electrode names used by
the external mesh.

Boundary Conditions

In the example, the bc parameter has been set to “Dirichlet” on all the electrodes, which
is the default. The bc parameter sets the type of boundary condition that is applied to the
density variables, the electron density and the hole density. There are two possible settings
for the bc parameter, Dirichlet and Neumann. If Dirichlet is specified, the electron and hole
densities are set to a specific value at the contact, and the applied values enforce charge
neutrality. See the Xyce Reference Guide for the charge-neutral equation [3]. If Neumann
is specified, a zero-flux condition is applied, which enforces that the current through the
electrode will be zero.

This parameter does not affect the electrostatic potential boundary condition. The bound-
ary condition applied to the potential is always Dirichlet, and is (in part) determined from
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Doping and Electrode specification example
vscope 1 0 0.0
rscope 2 1 50.0
cid 3 0 1.0u
r1 4 3 1515.0
vid 4 0 1.00
*------------- Diode PDE device ------------------
Z1DIODE 2 3 PDEDIODE
+ tecplotlevel=1 txtdatalevel=1 cyl=1
+ meshfile=internal.msh
+ nx=25 l=70.0e-4 ny=40 w=26.0e-4
* ELECTRODES: ckt node 2, ckt node 3
+ node = {name = anode, cathode
+ bc = dirichlet, dirichlet
+ start = 0.0, 0.0
+ end = 70.0e-4, 70.0e-4
+ side = top, bottom
+ material = neutral, neutral
+ oxideBndryFlag = 0, 0 }
* DOPING REGIONS: region 1, region 2, region 3
+ region= {function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4.0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 60.0e-04, 100.0
+ xwidth = 0.0 , 4.0e-04, 1.0
+ yloc = 0.0 , 24.5e-04, 9.0e-04
+ ywidth = 0.0 , 4.5e-04, 8.0e-04
+ flatx = 0 , -1 , -1
+ flaty = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------
.MODEL PDEDIODE ZOD level=2
.options LINSOL type=superlu
.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.DC vscope 0 0 1
.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)
.END

Figure 11.12. Two-dimensional example, with detailed doping
and detailed electrodes.
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the connected nodal voltage. To apply a specific voltage to an electrode contact, a voltage
source should be attached to it, such as VBB in the schematic Figure 11.6.

Electrode Material

Several different electrode materials can be specified. A list is given in Table 11.3. The
main effect of any metal (non-neutral) material is the impose a Schottky barrier at the
contact. This generally makes numerical solution more difficult, so any materials should
be applied with caution.

The Xyce Reference Guide [3] has a detailed description of Schottky barriers and how
they are imposed on contacts in Xyce. Also, values for electron affinities of various bulk
materials and workfunction values for the various metal contacts are given in the Reference
Guide.

Material Symbol Comments

neutral neutral Default

aluminum al

p+-polysilicon ppoly

n+-polysilicon npoly

molybdenum mo

tungsten w

molybdenum disilicide modi

tungsten disilicide wdi

copper cu

platinum pt

gold au

Table 11.3: Electrode Material Options. Neutral contacts are the
default, and pose the least problem to the solvers.

There is also an oxideBndryFlag parameter, which if set to true (1), will model the contact
as having an oxide layer in between the metal contact and the bulk semiconductor. Note
that this oxide layer model does not currently include displacement current, so transient
capacitive effects will not be seen in the results.

Location Parameters

Each electrode has three location parameters: start, end, and side. These are only
necessary if using the internal mesh and should not be specified if using an external,
SGFramework mesh.
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For the internal mesh, the mesh is assumed to be rectangular, and any electrode is as-
sumed to be on one of the four sides. The four side possibilities are: top, bottom, right
and left. These four sides are parallel to mesh directions. The start and end parameters
are floating point numbers which specify the starting and ending location of an electrode,
in units of cm.

The lower left hand corner of the mesh rectangle is located at the origin. A side=bottom
electrode with start=0.0 and end=1.0e-4 will originate at the lower left hand corner of the
mesh (x=0.0, y=0.0) and end at (x=1.0e-4, y=0.0).

NOTE: Xyce will attempt to match the specified electrode to the specified mesh. However,
if the user specifies a mesh that is not consistent with the electrode locations, the elec-
trodes will not be able to have the exact length specified. For example, if the mesh spacing
is ∆x = 1.0e-5, then the electrodes can only have a length that is a multiple of 1.0e-5.

Electrode Defaults

There are defaults for all the electrode parameters except the names. In practice, the
locations of the electrodes will usually be explicitly specified (either using the electrode
table, or as part of an external mesh file). Default electrode locations have been created to
correspond with the default dopings, and they should only be used in that context.

Location Parameters

In practice, the locations of the electrodes will usually be explicitly specified, but they have
defaults to correspond with the default dopings. The default electrode locations in one-
dimensional devices are for that of a diode. One electrode is located at x=xmin, while the
other is located at x=xmax.

The default electrode locations in two-dimensional devices are dependent on the number
of electrodes, similar to the default dopings. Table 11.2 can be used to determine the
configurations. For the two-terminal diode, the two electrodes are along the y-axis, at the
x=xmin and x=xmax extrema. For the three-terminal BJT , all three electrodes are parallel
to the x-axis, along the top, at y=ymax. For the four-terminal MOSFET, the drain, gate, and
source electrodes are also along the top, but the bulk electrode spans the entire length of
the bottom of the mesh, at y=ymin.

Other Parameters

The default contact material is neutral. The default oxideBndryFlag is false (0). The
default boundary condition (bc) is Dirichlet.
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11.6 Meshes

Meshes from the SG Framework (External, 2D)

It is possible to have Xyce read in a two-dimensional mesh which was generated exter-
nally, by the SGFramework [13]. The mesh pictured in Figure 11.1 is such a mesh, and
so is the refined mesh (not inside the circle) in Figure 11.6. To use an SGF-generated
mesh, the instance parameter, ”meshfile” must be used, and set to be the name of the
SGFramework-generated file. Xyce will assume that the mesh file is located in the lo-
cal execution directory. One advantage of using an externally generated mesh (over an
internally generated mesh - see next section) is that external meshing tools are more so-
phisticated, and in particular have mesh refinement capabilities.

Instructions for the usage of the SGFramework is outside the scope of this document. If the
user wishes to generate meshes in this manner, it is best to consult Kramer [13]. Future
versions of Xyce may accept mesh files generated by other mesh generators, such as
Cubit [16].

Cartesian Meshes (Internal, 1D and 2D)

One dimensional and two-dimensional devices can both create Cartesian meshes, without
requiring an external mesh generator. For the two-dimensional devices, it is necessary
to specify meshfile=internal.msh to invoke the Cartesian meshing capability. For one-
dimensional devices, this isn’t needed, as there is no other option.

Meshes generated in this manner are very simple, in that there are only two parameters
per dimension, and the resulting mesh is uniform. An example of such a mesh can be seen
in Figure 11.7. The mesh spacing is determined from the following expressions:

∆x =
l

nx− 1
(11.8)

∆y =
w

ny − 1
(11.9)

This mesh specification assumes that the domain is a rectangle. Non-rectangular domains
can only be described using an external mesh program.

Cylindrical meshes, 2D

For two-dimensional devices, the simulation area may be a cylinder slice. This capability
is turned on by the instance parameter, cyl=1. For an example, see Figure 11.13. It is
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assumed that the axis of the cylinder corresponds to the minimum radius (or x-axis value)
of the mesh, while the circumference corresponds to the maximum radius (or maximum
x-axis value). This feature can be applied to either external or internal two-dimensional
meshes.

Figure 11.13. Cylindrical Mesh Example. This mesh has been
designed to match the electron microscope image, which is of a
stockpile device.

134



11.7 Mobility Models XyceTM Users’ Guide

11.7 Mobility Models
There are several mobility models available to both the one and two dimensional devices,
and they are listed in Table 11.4. These models are fairly common, and can be found in
most device simulators. [11] [12] These models are described in more detail in the Xyce
Reference Guide [3].

Mobility Name Description Reference

arora Basic mobility model Arora, et al. [17]

analytic Basic mobility model Caughy and Thomas [18]

carr Includes carrier-carrier

interactions
Dorkel and Leturq [19]

Table 11.4: Mobility models available for PDE devices

Specifying the mobility model from the netlist is done by setting the mobmodel parameter to
the name of the model. Model names are given in the first column of Table 11.4. The mo-
bility model is specified as an instance parameter on the device instance line, as (typically)
mobmodel=arora. See the usage in Figure 11.5 for a more detailed example.

The default mobility is the ”carr” mobility, which includes carrier-carrier interactions. This
model has a stronger dependence on carrier density than the other two models, and intro-
duces some nonlinearity into the problem. If having convergence problems, consider using
either the ”arora” or ”analytic” model, as both of these models are a little bit simpler.
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11.8 Bulk Materials
The bulk material is specified using the bulkmaterial instance parameter. Xyce currently
supports Silicon (si) as a bulk material and this is the default. It can also simulate Gal-
lium Arsenide (gaas) and Germanium (ge), but these materials have not been extensively
tested.

The mobility models described in the previous section each support all three materials,
and the dielectric permittivity is correct for all three, but the carrier lifetime models may not
be. These issues will be resolved in a future Xyce release.
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11.9 Solver Options
Problems that are based on TCAD/PDE devices have different optimal solver settings than
do analog circuit problems. Generally, as these devices are mesh-based, and have a more
predictable topology, iterative linear solvers have a better chance of being successful than
they do for analog circuit simulation. Note that if using a direct solver (klu, superlu, or
ksparse), the best option is superlu, because ksparse and klu have both been optimized
for circuits (not mesh-based PDE problems), while superlu is more general.

On the nonlinear solver level, voltage limiting doesn’t have an obvious application to PDE
devices, and quadratic line search appears to be the best algorithm. The solver options
specified in the example netlist Figure 11.5 are adequate for simulations that have a simple
(linear) circuit attached.

For problems which involve a complicated external circuit, it is best to apply the two-level
Newton algorithm to the nonlinear solve. This algorithm is described in detail in Keiter [20]
and Mayaram [21]. While this algorithm has been implemented and exercised within Xyce,
it is not part of the Release 2.1 version. To use this algorithm, the user will need to obtain
a special “custom” build of Xyce, or wait until a future release.
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11.10 Output and Visualization

Using the .PRINT Command

For simple plots (such as I-V curves), output results for Xyce can be generated with the
.PRINT statement, which is described in detail in section 9.1. Figures 11.4 and 11.9 are
examples of the kind of data that is produced with .PRINT statement netlist commands.
These particular figures were plotted in Tecplot, but many other plotting programs would
also have worked, including XDAMP [22].

Multi-dimensional Plots

Device simulation has visualization needs which go beyond that of conventional circuit
simulation. Multi-dimensional perspective and/or contour plots are often desirable. Xyce
is capable of outputting multi-dimensional plot data in several formats, including Tecplot,
GnuPlot, and sgplot. Currently, the options for each of these formats can only enable or
disable the output of files, and when enabled, a new file (or a new append to an existing
file) will happen at every time step or DC sweep step. For long simulations, this may
produce a prohibitive number of files. Currently, there is no equivalent to the .OPTIONS
OUTPUT INITIAL INTERVAL command, nor does the output of plot data currently use this
command. Plot files are either output at every step or not at all.

For each type of plot file, the file is placed in the execution directory. Each individual device
instance is given a unique file, or files, and the file names are derived from the name of the
PDE device instance. The instance names provides the prefix, and the file type (tecplot,
gnuplot, sgplot) determines the suffix.

Tecplot Data

Tecplot is a commercial plotting program from Amtec Engineering, Inc., and is the best
choice for creating contour plots of spatially dependent data. All of the graphical examples
in this chapter were created with Tecplot. (see Figures 11.7 and 11.8 for examples) The
output of Tecplot files is enabled using the instance parameter, tecplotlevel=1. If set to
zero, no tecplot files are output. If set to one, a separate tecplot file is output for each
nonlinear solve. If set to two, a single tecplot file, which contains data for every nonlinear
solve is created and is appended at the end of each solve.

By default tecplotlevel is set to one, meaning the code will, by default produce a separate
Tecplot file for each nonlinear solve. The suffix for Tecplot data files is *.dat. Internally, the
file is an ASCII text file. Tecplot does have a binary format, but Xyce has not yet been set
up to use it.

Note that it is also possible to set tecplotlevel=2. Doing this will force Xyce to create one
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single tecplot file, and the data from each solve will be appended to this file as a separate
zone. This makes it possible to use Tecplot to create animations.

Gnuplot Data

Gnuplot is an open source plotting program, which is available on most Linux/Unix plat-
forms. The parameter for this type of output is gnuplotlevel=1. This type of output file is
off (zero) by default, meaning no gnuplot files will be output. The suffix for Gnuplot files is
*Gnu.dat. Like tecplot files, Gnuplot files are also in ASCII text format.

NOTE: Gnuplot will only work with structured Cartesian meshes. Externally created, un-
structured meshes (even ones that appear Cartesian) cannot be plotted with Gnuplot.

Sgplot Data

Sgplot is the plotting program for the SGFramework [13]. The parameter for this type of
output is sgplotlevel=1. This type of output file is off (zero) by default. The suffix for
Sgplot data files is *.res. Internally this file is in binary format. Note that it is not a machine-
independent file format.

Volume Averaged Data

Xyce can also output volume-averaged information for each PDE device. This is enabled
by setting the instance parameter, txtdatalevel=1. It is off (zero) by default, meaning no
text files with volume averaged data will be output.
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